| [1] |
柳建新, 赵然, 郭振威. 电磁法在金属矿勘查中的研究进展[J]. 地球物理学进展, 2019, 34(1):151-160.
Google Scholar
|
| [2] |
Liu J X, Zhao R, Guo Z W. Research progress of electromagnetic methods in the exploration of metal deposits[J]. Progress in Geophysics, 2019, 34(1):151-160.
Google Scholar
|
| [3] |
吕庆田, 张晓培, 汤井田, 等. 金属矿地球物理勘探技术与设备:回顾与进展[J]. 地球物理学报, 2019, 62(10):3629-3664.
Google Scholar
|
| [4] |
Lyu Q T, Zhang X P, Tang J T, et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China[J]. Chinese Journal of Geophysics, 2019, 62(10):3629-3664.
Google Scholar
|
| [5] |
吴小平, 刘洋, 王威. 基于非结构网格的电阻率三维带地形反演[J]. 地球物理学报, 2015, 58(8):2706-2717.
Google Scholar
|
| [6] |
Wu X P, Liu Y, Wang W. 3D resistivity inversion incorporating topography based on unstructured meshes[J]. Chinese Journal of Geophysics, 2015, 58(8):2706-2717.
Google Scholar
|
| [7] |
王智, 吴爱平, 李刚. 起伏地表条件下的井中激电井地观测正演模拟研究[J]. 石油物探, 2018, 57(6):927-935, 951.
Google Scholar
|
| [8] |
Wang Z, Wu A P, Li G. Forward modeling of borehole-ground induced polarization method under undulating topography[J]. Geophyscial Prospecting for Petroleum, 2018, 57(6):927-935,951.
Google Scholar
|
| [9] |
潘和平. 井中激发极化法在矿产资源勘探中的作用[J]. 物探与化探, 2013, 37(4):620-626.
Google Scholar
|
| [10] |
Pan H P. The Role of Borehole induced polarization/resistivity method in the exploration of mineral resoueces[J]. Geophysics and Geochemical Exploration, 2013, 37(4):620-626.
Google Scholar
|
| [11] |
汤井田, 张继锋, 冯兵, 等. 井地电阻率法歧离率确定高阻油气藏边界[J]. 地球物理学报, 2007, 50(3):926-931.
Google Scholar
|
| [12] |
Tang J T, Zhang J F, Feng B, et al. Detemination of borders for resistive oil and gas reservoirs by deviation rate using the hole-to-surface resistivity method[J]. Chinese Journal of Geophysics, 2007, 50(3):926-931.
Google Scholar
|
| [13] |
黄俊革, 王家林, 阮百尧. 三维高密度电阻率E-SCAN法有限元模拟异常特征研究[J]. 地球物理学报, 2006, 49(4):1206-1214.
Google Scholar
|
| [14] |
Huang J G, Wang J L, Ruan B Y. A study on FEM modeling of anomalies of 3-D high-density E-SCAN resistivity survey[J]. Chinese Journal of Geophysics, 2006, 49(4):1206-1214.
Google Scholar
|
| [15] |
Li Y, Spitzer K. Finite element resistivity modelling for three-dimensional structures with arbitrary anisotropy[J]. Physics of the Earth & Planetary Interiors, 2005, 150(1-3):15-27.
Google Scholar
|
| [16] |
Wu X. A 3-D finite-element algorithm for DC resistivity modelling using the shifted incomplete Cholesky conjugate gradient method[J]. Geophysical Journal International, 2003, 154(3):947-956.
Google Scholar
|
| [17] |
吴小平, 汪彤彤. 利用共轭梯度算法的电阻率三维有限元正演[J]. 地球物理学报, 2003, 46(3):428-432.
Google Scholar
|
| [18] |
Wu X P, Wang T T. A 3-D finite-element resistivity forward modeling using conjugate gradient algorithm[J]. Chinese Journal of Geophysics, 2003, 46(3):428-432.
Google Scholar
|
| [19] |
Li Y, Klaus S. Three-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions[J]. Geophysical Journal International, 2002, 51(3):924-934.
Google Scholar
|
| [20] |
黄俊革, 阮百尧, 鲍光淑. 齐次边界条件下三维地电断面电阻率有限元数值模拟法[J]. 桂林工学院学报, 2002, 22(1):11-14.
Google Scholar
|
| [21] |
Huang J G, Ruan B Y, Bao G S. Fem under quantic-boundary condition for modeling resistivity on 3-D geoelectric section[J]. Journal of Guilin Institute of Technology, 2002, 22(1):11-14.
Google Scholar
|
| [22] |
Ren Z, Qiu L, Tang J, et al. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods[J]. Geophysical Journal International, 2018, 212(1):76-87.
Google Scholar
|
| [23] |
Ren Z, Tang J. A goal-oriented adaptive finite-element approach for multi-electrode resistivity system[J]. Geophysical Journal International, 2014, 199(1):136-145.
Google Scholar
|
| [24] |
Wei W, Xiaoping W, Spitzer K. Three-dimensional DC anisotropic resistivity modelling using finite elements on unstructured grids[J]. Geophysical Journal International, 2013, 193(2):734-746.
Google Scholar
|
| [25] |
Ren Z, Jingtian T. 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method[J]. Geophysics, 2010, 75(1):H7-H17.
Google Scholar
|
| [26] |
Blome M, Maurer H R, Schmidt K. Advances in three-dimensional geoelectric forward solver techniques[J]. Geophysical Journal International, 2009, 176(3):740-752.
Google Scholar
|
| [27] |
Rucker C, Gunther T, Spitzer K. Three-dimensional modelling and inversion of dc resistivity data incorporating topography-I. Modelling[J]. Geophysical Journal International, 2006, 166(2):495-505.
Google Scholar
|
| [28] |
Gunther T, Rucker C, Spitzer K. Three-dimensional modelling and inversion of DC resistivity data incorporating topography-II. Inversion[J]. Geophysical Journal of the Royal Astronomical Society, 2006, 166(2):506-517.
Google Scholar
|
| [29] |
Zhou B, Greenhalgh S A. Finite element three-dimensional direct current resistivity modelling; accuracy and efficiency considerations[J]. Geophysical Journal International, 2001, 145(3):679-688.
Google Scholar
|
| [30] |
Sasaki Y. 3-D resistivity inversion using finite-element method[J]. Geophysics, 1994, 59(12):1839.
Google Scholar
|
| [31] |
Wu X, Xiao Y, Qi C, et al. Computations of secondary potential for 3-D DC resistivity modelling using an incomplete Choleski conjugate-gradient method[J]. Geophysical Prospecting, 2003, 51(6):567-577.
Google Scholar
|
| [32] |
吴小平, 徐果明. 利用ICCG迭代技术加快电阻率三维正演计算[J]. 煤田地质与勘探, 1999, 27(3):63-67.
Google Scholar
|
| [33] |
Wu X P, Xu G M. 3-D resistivity forward calculation accelerated by ICCG iteration technique[J]. Coal Geology and Exploration, 1999, 27(3):63-67.
Google Scholar
|
| [34] |
吴小平, 徐果明, 李时灿. 利用不完全Cholesky共轭梯度法求解点源三维地电场[J]. 地球物理学报, 1998, 41(6):848-855.
Google Scholar
|
| [35] |
Wu X P, Xu G M, Li S C. The calculation of three-dimensional geoelectric field of point source by incomplete cholesky conjugate gradient method[J]. Chinese Journal of Geophysics, 1998, 41(6):848-855.
Google Scholar
|
| [36] |
Zhao S, Yedlin M J. Some refinements on the finite-difference method for 3-D dc resistivity modeling[J]. Geophysics, 1996, 61(5):1301-1307.
Google Scholar
|
| [37] |
Zhang J, Mackie R L, Madden T R. 3-D resistivity forward modeling and inversion using conjugate gradients[J]. Geophysics, 1995, 60(5):1313-1325.
Google Scholar
|
| [38] |
Spitzer K. A 3-D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods[J]. Geophysical Journal International, 1995, 123(3):903-914.
Google Scholar
|
| [39] |
汤井田, 王飞燕, 任政勇. 基于非结构化网格的2.5-D直流电阻率自适应有限元数值模拟[J]. 地球物理学报, 2010, 53(3):708-716.
Google Scholar
|
| [40] |
Tang J T, Wang F Y, Ren Z Y. 2.5-D DC resistivity modeling by adaptive finite-element method with unstructured triangulation[J]. Chinese Journal of Geophysics, 2010, 53(3):708-716.
Google Scholar
|
| [41] |
任政勇, 汤井田. 基于局部加密非结构化网格的三维电阻率法有限元数值模拟[J]. 地球物理学报, 2009, 52(10):2627-2634.
Google Scholar
|
| [42] |
Ren Z Y, Tang J T. Finite element modeling of 3-D DC resistivity using locally refined unstructured meshes[J]. Chinese Journal of Geophysics, 2009, 52(10):2627-2634.
Google Scholar
|
| [43] |
彭荣华, 胡祥云, 李建慧, 等. 频率域海洋可控源电磁垂直各向异性三维反演[J]. 地球物理学报, 2019, 62(6):2165-2175.
Google Scholar
|
| [44] |
Peng R H, Hu X Y, Li J H, et al. 3D inversion of frequency-domain marine CSEM data in VTI media[J]. Chinese Journal of Geophysics, 2019, 62(6):2165-2175.
Google Scholar
|
| [45] |
Gundogdu N Y, Candansayar M E. Three-dimensional regularized inversion of DC resistivity data with different stabilizing functionals[J]. Geophysics, 2018, 83(6):E399-E407.
Google Scholar
|
| [46] |
郭来功, 戴广龙, 杨本才, 等. 多先验信息约束的三维电阻率反演方法[J]. 石油地球物理勘探, 2018, 53(6):1333-1340.
Google Scholar
|
| [47] |
Guo L G, Dai G L, Yang B C. et al. 3D resistivity inversion with multiple priori-information constraint[J]. Oil Geophysical Prospecting, 2018, 53(6):1333-1340.
Google Scholar
|
| [48] |
彭荣华, 胡祥云, 韩波. 基于高斯牛顿法的频率域可控源电磁三维反演研究[J]. 地球物理学报, 2016, 59(9):3470-3481.
Google Scholar
|
| [49] |
Peng R H, Hu X Y, Han B. 3D inversion of frequency-domain CSEM data based on Gauss-Newton optimization[J]. Chinese Journal of Geophysics, 2016, 59(9):3470-3481.
Google Scholar
|
| [50] |
Oldenburg D W, Haber E, Shekhtman R. Three dimensional inversion of multisource time domain electromagnetic data[J]. Geophysics, 2013, 78(1):E47-E57.
Google Scholar
|
| [51] |
Pidlisecky A, Haber E, Knight R J. RESINVM3D: A 3D resistivity inversion package[J]. Geophysics, 2007, 72(2):H1-H10.
Google Scholar
|
| [52] |
吴小平, 徐果明. 利用共轭梯度法的电阻率三维反演研究[J]. 地球物理学报, 2000, 43(3):420-427.
Google Scholar
|
| [53] |
Wu X P, Xu G M. Study on 3-D resistivity inversion using conjugate gradient method[J]. Chinese Journal of Geophysics, 2000, 43(3):420-427.
Google Scholar
|
| [54] |
徐凯军, 李桐林, 张辉, 等. 基于共轭梯度法的垂直有限线源三维电阻率反演[J]. 煤田地质与勘探, 2006, 34(3):68-71.
Google Scholar
|
| [55] |
Xu K J, Li T L, Zhang H, et al. 3D resistivity inversion of vertical finite line source using conjugate gradients[J]. Coal Geology and Exploration, 2006, 34(3):68-71.
Google Scholar
|
| [56] |
Cao X Y, Huang X, Yin C C, et al. 3D MT anisotropic inversion based on unstructured finite-element method[J]. Journal of Environmental & Engineering Geophysics, 2021, 26(1):49-60.
Google Scholar
|
| [57] |
惠哲剑, 殷长春, 刘云鹤, 等. 基于非结构有限元的时间域海洋电磁三维反演[J]. 地球物理学报, 2020, 63(8):3167-3179.
Google Scholar
|
| [58] |
Hui Z J, Yin C C, Liu Y H, et al. 3D inversion of time-domain marine EM data based on unstructured finite-element method[J]. Chinese Journal of Geophysics, 2020, 63(8):3167-3179.
Google Scholar
|
| [59] |
余辉, 邓居智, 陈辉, 等. 起伏地形下大地电磁L-BFGS三维反演方法[J]. 地球物理学报, 2019, 62(8):3175-3188.
Google Scholar
|
| [60] |
Yu H, Deng J Z, Chen H, et al. Three-dimensional magnetotelluric inversion under topographic relief based on the limited-memory quasi-Newton algorithm(L_BFGS)[J]. Chinese Journal of Geophysics, 2019, 62(8):3175-3188.
Google Scholar
|
| [61] |
邓琰, 汤吉, 阮帅. 三维大地电磁自适应正则化有限内存拟牛顿反演[J]. 地球物理学报, 2019, 62(9):3601-3614.
Google Scholar
|
| [62] |
Deng Y, Tang J, Ruan S. Adaptive regularized three-dimensional magnetotelluric inversion based on the LBFGS quasi-Newton method[J]. Chinese Journal of Geophysics, 2019, 62(9):3601-3614.
Google Scholar
|
| [63] |
殷长春, 朱姣, 邱长凯, 等. 航空电磁拟三维模型空间约束反演[J]. 地球物理学报, 2018, 61(6):2537-2547.
Google Scholar
|
| [64] |
Yin C C, Zhu J, Qiu C K, et al. Spatially constrained inversion for airborne EM data using quasi-3D models[J]. Chinese Journal of Geophysics, 2018, 61(6):2537-2547.
Google Scholar
|
| [65] |
秦策, 王绪本, 赵宁. 基于二次场方法的并行三维大地电磁正反演研究[J]. 地球物理学报, 2017, 60(6):2456-2468.
Google Scholar
|
| [66] |
Qin C, Wang X B, Zhao N. Parallel three-dimensional forward modeling and inversion of magnetotelluric based on a secondary field approach[J]. Chinese Journal of Geophysics, 2017, 60(6):2456-2468.
Google Scholar
|
| [67] |
赵宁, 王绪本, 秦策, 等. 三维频率域可控源电磁反演研究[J]. 地球物理学报, 2016, 59(1):330-341.
Google Scholar
|
| [68] |
Zhao N, Wang X B, Qin C, et al. 3D frequency-domain CSEM inversion[J]. Chinese Journal of Geophysics, 2016, 59(1):330-341.
Google Scholar
|
| [69] |
刘云鹤, 殷长春. 三维频率域航空电磁反演研究[J]. 地球物理学报, 2013, 56(12):4278-4287.
Google Scholar
|
| [70] |
Liu Y H, Yin C C. 3D inversion for frequency-domain HEM data[J]. Chinese Journal of Geophysics, 2013, 56(12):4278-4287.
Google Scholar
|
| [71] |
Avdeev D, Avdeeva A. 3D Magnetotelluric inversion using a limited-memory quasi-Newton optimization[J]. Geophysics, 2009, 74(3):F45.
Google Scholar
|
| [72] |
Xiao Y, Wei Z, Wang Z. A limited memory BFGS-type method for large-scale unconstrained optimization[J]. Computers & Mathematics with Applications, 2008, 56(4):1001-1009.
Google Scholar
|
| [73] |
Eldad, Haber, Douglas, et al. Inversion of time domain three-dimensional electromagnetic data[J]. Geophysical Journal International, 2007, 171(2):B23-B34.
Google Scholar
|
| [74] |
Avdeeva A, Avdeev D B. A limited memory quasi-Newton inversion for 1D magnetotellurics[J]. Geophysics, 2006, 71(5):G191-G196.
Google Scholar
|
| [75] |
Haber E. Quasi-Newton methods for large-scale electromagnetic inverse problems[J]. Inverse Problems, 2005, 21(1):305-323.
Google Scholar
|
| [76] |
Newman G A, Boggs P T. Solution accelerators for large-scale 3D electromagnetic inverse problems[J]. Inverse Problems, 2004, 20(6):S151-S170.
Google Scholar
|
| [77] |
Nash S G, Nocedal J. A numerical study of the limited memory BFGS method and the truncated-Newton method for large scale optimization[J]. SIAM Journal on Optimization, 1991, 1(3):358-372.
Google Scholar
|
| [78] |
Nocedal J. Updating quasi-Newton matrices with limited storage[J]. Mathematics of Computation, 1980, 35(151):773-782.
Google Scholar
|
| [79] |
唐传章, 程见中, 严良俊, 等. 基于边界约束有限内存的拟牛顿CSAMT一维反演及应用[J]. 煤田地质与勘探, 2019, 47(5):193-200.
Google Scholar
|
| [80] |
Tang C Z, Cheng J Z, Yan L J, et al. LBFGS CSAMT 1D inversion of limited memory based on boundary constraint and its application[J]. Coal Geology and Exploration, 2019, 47(5):193-200.
Google Scholar
|
| [81] |
马欢, 郭越, 吴萍萍, 等. 基于MPI并行算法的电阻率法多种装置数据的三维联合反演[J]. 地球物理学报, 2018, 61(12):5052-5065.
Google Scholar
|
| [82] |
Ma H, Guo Y, Wu P P, et al. 3-D joint inversion of multi-array data set in the resistivity method based on MPI parallel algorithm[J]. Chinese Journal of Geophysics, 2018, 61(12):5052-5065.
Google Scholar
|
| [83] |
董浩, 魏文博, 叶高峰, 等. 基于有限差分正演的带地形三维大地电磁反演方法[J]. 地球物理学报, 2014, 57(3):939-952.
Google Scholar
|
| [84] |
Dong H, Wei W B, Ye G F, et al. Study of Three-dimensional magnetotelluric inversion including surface topography based on Finite-difference method[J]. Chinese Journal of Geophysics, 2014, 57(3):939-952.
Google Scholar
|
| [85] |
张昆, 董浩, 严加永, 等. 一种并行的大地电磁场非线性共轭梯度三维反演方法[J]. 地球物理学报, 2013, 56(11):3922-3931.
Google Scholar
|
| [86] |
Zhang K, Dong H, Yan J Y, et al. A NLCG inversion method of magnetotellurics with parallel structure[J]. Chinese Journal of Geophysics, 2013, 56(11):3922-3931.
Google Scholar
|
| [87] |
林昌洪, 谭捍东, 舒晴, 等. 可控源音频大地电磁三维共轭梯度反演研究[J]. 地球物理学报, 2012, 55(11):3829-3838.
Google Scholar
|
| [88] |
Lin C H, Tan H D, Shu Q, et al. Three-dimensional conjugate gradient inversion of CSAMT data[J]. Chinese Journal of Geophysics, 2012, 55(11):3829-3838.
Google Scholar
|
| [89] |
胡祖志, 胡祥云, 何展翔. 大地电磁非线性共轭梯度拟三维反演[J]. 地球物理学报, 2006, 49(4):1226-1234.
Google Scholar
|
| [90] |
Hu Z Z, Hu X Y, He Z X. Pseudo-three-dimensional magnetotelluric using nonlinear conjugate gradients[J]. Chinese Journal of Geophysics, 2006, 49(4):1226-1234.
Google Scholar
|
| [91] |
Rodi W L, Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 2001, 66(1):174-187.
Google Scholar
|
| [92] |
Newman G A, Alumbaugh D L. Three-dimensional magnetotelluric inversion using non-linear conjugate gradients[J]. Geophysical Journal International, 2000, 140(2):410-424.
Google Scholar
|
| [93] |
王智, 潘和平, 骆玉虎, 等. 基于不等式约束的井地电阻率法三维非线性共轭梯度反演研究[J]. 地球物理学进展, 2016, 31(1):360-370.
Google Scholar
|
| [94] |
Wang Z, Pan H P, Luo Y H, et al. 3-D hole-to-surface resistivity inversion with nonlinear conjugate gradients method under the constraint of inequality[J]. Progress in Geophysics, 2016, 31(1):360-370.
Google Scholar
|
| [95] |
王智, 潘和平, 吴爱平, 等. 基于不等式约束的井中激电三维反演研究[J]. 石油物探, 2016, 55(3):455-466.
Google Scholar
|
| [96] |
Wang Z, Pan H P, Wu A P, et al. 3D inversion of borehole induced polarization under the inequality constraint[J]. Geophysical Prospecting for Petroleum, 2016, 55(3):455-466.
Google Scholar
|
| [97] |
Kim H J, Song Y, Lee K H. Inequality constraint in least-squares inversion of geophysical data[J]. Earth, Planets and Space, 1999, 51(4):255-259.
Google Scholar
|
| [98] |
Li Y, Oldenburg D W. 3-D Inversion of induced polarization data[J]. Geophysics, 2000, 65(6):1931-1945.
Google Scholar
|
| [99] |
黄俊革, 阮百尧, 鲍光淑. 基于有限单元法的三维地电断面电阻率反演[J]. 中南大学学报:自然科学版, 2004, 35(2):295-299.
Google Scholar
|
| [100] |
Huang J G, Ruan B Y, Bao G S. Resistivity inversion on 3-D section based on FEM[J]. Journal of Central South University:Science and Technology, 2004, 35(2):295-299.
Google Scholar
|
| [101] |
宛新林, 席道瑛, 高尔根, 等. 用改进的光滑约束最小二乘正交分解法实现电阻率三维反演[J]. 地球物理学报, 2005, 48(2):439-444.
Google Scholar
|
| [102] |
Wan X L, Xi D Y, Gao E G, et al. 3-D resistivity inversion by the least-squares QR factorization method under improved smoothness constraint condition[J]. Chinese Journal of Geophysics, 2005, 48(2):439-444.
Google Scholar
|
| [103] |
刘斌, 李术才, 聂利超, 等. 基于自适应加权光滑约束与PCG算法的三维电阻率探测反演成像[J]. 岩土工程学报, 2012, 34(9):1646-1653.
Google Scholar
|
| [104] |
Liu B, Li S C, Nie L C, et al. Inversion imaging of 3D resistivity detection using adaptive-weighted smooth constraint and PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9):1646-1653.
Google Scholar
|
| [105] |
刘斌, 李术才, 李树忱, 等. 基于不等式约束的最小二乘法三维电阻率反演及其算法优化[J]. 地球物理学报, 2012, 55(1):260-268.
Google Scholar
|
| [106] |
Liu B, Li S C, Li S C, et al. 3D electrical resistivity inversion with least-squares method based on inequality constraint and its computation effciency optimization[J]. Chinese Journal of Geophysics, 2012, 55(1):260-268.
Google Scholar
|
| [107] |
刘斌, 聂利超, 李术才, 等. 三维电阻率空间结构约束反演成像方法[J]. 岩石力学与工程学报, 2012, 31(11):2258-2268.
Google Scholar
|
| [108] |
Liu B, Nie L C, Li S C, et al. 3D electrical resistivity inversion tomography with spatial structural constraint[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11):2258-2268.
Google Scholar
|
| [109] |
底青云, 薛国强, 殷长春, 等. 中国人工源电磁探测新方法[J]. 中国科学:地球科学, 2020, 50(9):1219-1227.
Google Scholar
|
| [110] |
Di Q Y, Xue G Q, Yin C C, et al. New methods of controlled-source electromagnetic detection in China[J]. Science China Earth Sciences, 2020, 50(9):1219-1227.
Google Scholar
|
| [111] |
殷长春, 刘云鹤, 熊彬. 地球物理三维电磁反演方法研究动态[J]. 中国科学:地球科学, 2020, 50(3):432-435.
Google Scholar
|
| [112] |
Yin C C, Liu Y H, Xiong B. Status and prospect of 3D inversions in EM geophysic[J]. Science China Earth Sciences, 2020, 50(3):432-435.
Google Scholar
|
| [113] |
Nocedal J, Wright S J, Mikosch T V, et al. Numerical Optimization[M]. Berlin:Springer, 1999.
Google Scholar
|
| [114] |
徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
Google Scholar
|
| [115] |
Xu S Z. FEM in geophysics[M]. Beijing: Science Press, 1994.
Google Scholar
|
| [116] |
韩波, 胡祥云, 何展翔, 等. 大地电磁反演方法的数学分类[J]. 石油地球物理勘探, 2012, 47(1):177-188.
Google Scholar
|
| [117] |
Han B, Hu X Y, He Z X, et al. Mathematical classification of magnetotelluric inversion methods[J]. Oil Geophysical Prospecting, 2012, 47(1):177-188.
Google Scholar
|
| [118] |
Siripunvaraporn W. Three-dimensional magnetotelluric inversion: An introductory guide for developers and users[J]. Surveys in Geophysics, 2012, 33(1):5-27.
Google Scholar
|
| [119] |
Geuzaine C, Remacle J F. Gmsh: A three-dimensional finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(1):1309-1331.
Google Scholar
|
| [120] |
Ahrens J, Geveci B, Law C. ParaView: An end-user tool for large data visualization[M]. New York: Academic Press, 2005.
Google Scholar
|
| [121] |
Ellis R G, Oldenburg D W. The pole-pole 3-D Dc-resistivity inverse problem:A conjugategradient approach[J]. Geophysical Journal of the Royal Astronomical Society, 1994, 119(1):187-194.
Google Scholar
|
| [122] |
Li Y, Oldenburg D W. Inversion of 3-D DC resisitivity data using an approximate inverse mapping[J]. Geophysical Journal International, 1994, 116(4):527-537.
Google Scholar
|