| [1] |
Yilmaz ?z. Seismic data analysis[J]. Society of Exploration Geophysicists, 2001.
Google Scholar
|
| [2] |
刘剑, 秦飞龙. 改进的小波阈值法及其在地震数据降噪处理中的应用[J]. 物探与化探, 2020, 44(4): 784.
Google Scholar
|
| [3] |
Liu J, Qin F L. The application of the improved wavelet threshold method to seismic data de-noising[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 784-789.
Google Scholar
|
| [4] |
孙永壮, 李键, 秦德文, 等. 三维边缘保持滤波方法在海上地震数据噪声压制中的应用研究——以东海某凹陷为例[J]. 物探与化探, 2021, 45(3): 692-701.
Google Scholar
|
| [5] |
Sun Y Z, Li J, Qin D W, et al. The application of 3D edge-preserving de-noising methods based on structure oriented in a complex faults block:A case study of C oilfield in East China Sea[J]. Geophysical and Geochemical Exploration, 2021, 45(3):692-701.
Google Scholar
|
| [6] |
Rasoul A, Mokhtar M, Roshandel K A, et al. Random noise attenuation of 2D seismic data based on sparse low-rank estimation of the seismic signal[J]. Computers & Geosciences, 2020, 135:104376.
Google Scholar
|
| [7] |
Sheriff R E, Geldart L P. Exploration seismology[M]. Cambridge: Cambridge University Press, 1995.
Google Scholar
|
| [8] |
Canales L L. Random noise reduction[C]// 54th Annual International Meeting. Atlanta:SEG, 1984:525-572.
Google Scholar
|
| [9] |
Chen Y K, Ma J T. Random noise attenuation by f-x empirical-mode decomposition predictive filtering[J]. Geophysics, 2014, 79(3): 81-91.
Google Scholar
|
| [10] |
Ray A, Jon C. Lateral prediction for noise attenuation by t-x and f-x techniques[J]. Geophysics, 1995, 60(6): 1887-1896.
Google Scholar
|
| [11] |
Ma?za B, Mirko V B. Random and coherent noise attenuation by empirical mode decomposition[J]. Geophysics, 2009, 74(5): 89-98.
Google Scholar
|
| [12] |
王亚娟, 李怀良, 庹先国, 等. 一种集成经验模态分解的样本熵阈值微地震信号降噪方法[J]. 物探与化探, 2019, 43(5): 1083-1089.
Google Scholar
|
| [13] |
Wang Y J, Li H L, Tuo X G, et al. A denoising method for microseismic signal based on the ensemble empirical mode decomposition of sample entropy threshold[J]. Geophysical and Geochemical Exploration, 2019, 43(5): 1083-1089.
Google Scholar
|
| [14] |
Liu W, Duan Z Y. Seismic signal denoising using f-x variational mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(8): 1313-1317.
Google Scholar
|
| [15] |
Rasoul A, Roshandel K A, Mokhtar M, et al. Seismic random noise attenuation using sparse low-rank estimation of the signal in the time-frequency domain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(5): 1612-1618.
Google Scholar
|
| [16] |
Cai H P, He Z H, Huang D J. Seismic data denoising based on mixed time-frequency methods[J]. Applied Geophysics, 2011, 8(4): 319-327.
Google Scholar
|
| [17] |
Amir N S M, Saman G, Roshandel K A, et al. Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition[J]. Geophysics, 2016, 81(2): 117-124.
Google Scholar
|
| [18] |
Oliveira M S, Henriques M V C, Leite F E A, et al. Seismic denoising using curvelet analysis[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(5): 2106-2110.
Google Scholar
|
| [19] |
Deng L, Yuan S Y, Wang S X. Sparse bayesian learning-based seismic denoise by using physical wavelet as basis functions[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 1993-1997.
Google Scholar
|
| [20] |
Bing P P, Liu W, Zhang Z H. A robust random noise suppression method for seismic data using sparse low-rank estimation in the time-frequency domain[J]. IEEE Access, 2020, 8: 183546-183556.
Google Scholar
|
| [21] |
Gao J J, Aaron S, Sacchi M D. Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising[J]. Geophysics, 2015, 80(6): 173-187.
Google Scholar
|
| [22] |
Nadia K, Sacchi M D. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation[J]. Geophysics, 2012, 77(3): 113-122.
Google Scholar
|
| [23] |
Xu P C, Lu W K, Wang B F. Seismic interference noise attenuation by convolutional neural network based on training data generation[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 741-745.
Google Scholar
|
| [24] |
Yu S W, Ma J W, Wang W L. Deep learning for denoising[J]. Geophysics, 2019, 84(6): 333-350.
Google Scholar
|
| [25] |
Zhang M, Liu Y, Chen Y K. Unsupervised seismic random noise attenuation based on deep convolutional neural network[J]. IEEE Access, 2019, 7: 179810-179822.
Google Scholar
|
| [26] |
梁立锋, 刘秀娟, 张宏兵, 等. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
Google Scholar
|
| [27] |
Liang L F, Liu X J, Zhang H B, et al. A study of the effect of hyperparameters GRU-CNN hybrid deep learning EI inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 133-139.
Google Scholar
|
| [28] |
Meng F L, Fan Q Y, Li Y. Self-supervised learning for seismic data reconstruction and denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2021: 1-5.
Google Scholar
|
| [29] |
Stephen A. Generative adversarial networks in seismic data processing[M]// Society of Exploration Geophysicists, 2018:1991-1995.
Google Scholar
|
| [30] |
Vicente O, Mauricio S. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[J]. Geophysics, 2011, 76(3): 25-32.
Google Scholar
|
| [31] |
Chen Y K, Zhou Y T, Chen W, et al. Empirical low-rank approximation for seismic noise attenuation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4696-4711.
Google Scholar
|
| [32] |
Cai J F, Candès E J, Shen Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.
Google Scholar
|
| [33] |
Ankit P, Selesnick I W. Enhanced low-rank matrix approximation[J]. IEEE Signal Processing Letters, 2016, 23(4): 493-497.
Google Scholar
|
| [34] |
Lu C Y, Zhu C M, Xu C Y, et al. Generalized singular value thresholding[J]. arXiv e-prints, 2015,(12).
Google Scholar
|
| [35] |
Rick C. Nonconvex splitting for regularized low-rank+sparse decomposition[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5810-5819.
Google Scholar
|
| [36] |
Gu S H, Zhang L, Zuo W M, et al. Weighted nuclear norm minimization with application to image denoising[C]// 2014 IEEE Conference on Computer Vision and Pattern recognition, 2014.
Google Scholar
|
| [37] |
Zhang S A, Yin P H, Xin J. Transformed schatten-1 iterative thresholding algorithms for low rank matrix completion[J]. arXiv e-prints, 2015: 1506-4444.
Google Scholar
|
| [38] |
Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
Google Scholar
|
| [39] |
Ewout V B, Michael P F. Probing the pareto frontier for basis pursuit solutions[J]. Siam J. Sci. Comput., 2008, 31(2): 890-912.
Google Scholar
|