China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 6
Article Contents

SHI Zhan-Zhan, PANG Su, WANG Yuan-Jun, CHI Yue-Long, ZHOU Qiang. 2022. Random noise attenuation of common offset gathers by f-x low-rank matrix approximation with nonconvex regularization. Geophysical and Geochemical Exploration, 46(6): 1444-1453. doi: 10.11720/wtyht.2022.1533
Citation: SHI Zhan-Zhan, PANG Su, WANG Yuan-Jun, CHI Yue-Long, ZHOU Qiang. 2022. Random noise attenuation of common offset gathers by f-x low-rank matrix approximation with nonconvex regularization. Geophysical and Geochemical Exploration, 46(6): 1444-1453. doi: 10.11720/wtyht.2022.1533

Random noise attenuation of common offset gathers by f-x low-rank matrix approximation with nonconvex regularization

  • Random noise attenuation played an important role in the seismic data processing. The low-rank estimation of the seismic signal in the time-frequency domain is essentially a trace-by-trace process, which cannot exploit the channel-to-channel coherence of the signal. We propose a novel random noise attenuation based on f-x low-rank matrix approximation with nonconvex regularization. Firstly, the noisy seismic data is transformed into the f-x domain by Fourier transform. Then, the time-frequency method is employed to decompose each discrete frequency slice. Finally, we estimate the sparse low-rank matrix from the obtained noisy matrix. This method enables the denoising of non-stationary signals by exploiting the spectral differences between signal and noise. Compared with the common shot and mid-point gathers, the common offset gather is characterized by flat events, which basically satisfies the assumption of linear events for f-x domain denoising, and it is suggested that the proposed algorithm should be applied to the common offset gather. Synthetic and real data sets demonstrate the performance of our proposed method in random noise suppression and preserving more useful energy.
  • 加载中
  • [1] Yilmaz ?z. Seismic data analysis[J]. Society of Exploration Geophysicists, 2001.

    Google Scholar

    [2] 刘剑, 秦飞龙. 改进的小波阈值法及其在地震数据降噪处理中的应用[J]. 物探与化探, 2020, 44(4): 784.

    Google Scholar

    [3] Liu J, Qin F L. The application of the improved wavelet threshold method to seismic data de-noising[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 784-789.

    Google Scholar

    [4] 孙永壮, 李键, 秦德文, 等. 三维边缘保持滤波方法在海上地震数据噪声压制中的应用研究——以东海某凹陷为例[J]. 物探与化探, 2021, 45(3): 692-701.

    Google Scholar

    [5] Sun Y Z, Li J, Qin D W, et al. The application of 3D edge-preserving de-noising methods based on structure oriented in a complex faults block:A case study of C oilfield in East China Sea[J]. Geophysical and Geochemical Exploration, 2021, 45(3):692-701.

    Google Scholar

    [6] Rasoul A, Mokhtar M, Roshandel K A, et al. Random noise attenuation of 2D seismic data based on sparse low-rank estimation of the seismic signal[J]. Computers & Geosciences, 2020, 135:104376.

    Google Scholar

    [7] Sheriff R E, Geldart L P. Exploration seismology[M]. Cambridge: Cambridge University Press, 1995.

    Google Scholar

    [8] Canales L L. Random noise reduction[C]// 54th Annual International Meeting. Atlanta:SEG, 1984:525-572.

    Google Scholar

    [9] Chen Y K, Ma J T. Random noise attenuation by f-x empirical-mode decomposition predictive filtering[J]. Geophysics, 2014, 79(3): 81-91.

    Google Scholar

    [10] Ray A, Jon C. Lateral prediction for noise attenuation by t-x and f-x techniques[J]. Geophysics, 1995, 60(6): 1887-1896.

    Google Scholar

    [11] Ma?za B, Mirko V B. Random and coherent noise attenuation by empirical mode decomposition[J]. Geophysics, 2009, 74(5): 89-98.

    Google Scholar

    [12] 王亚娟, 李怀良, 庹先国, 等. 一种集成经验模态分解的样本熵阈值微地震信号降噪方法[J]. 物探与化探, 2019, 43(5): 1083-1089.

    Google Scholar

    [13] Wang Y J, Li H L, Tuo X G, et al. A denoising method for microseismic signal based on the ensemble empirical mode decomposition of sample entropy threshold[J]. Geophysical and Geochemical Exploration, 2019, 43(5): 1083-1089.

    Google Scholar

    [14] Liu W, Duan Z Y. Seismic signal denoising using f-x variational mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(8): 1313-1317.

    Google Scholar

    [15] Rasoul A, Roshandel K A, Mokhtar M, et al. Seismic random noise attenuation using sparse low-rank estimation of the signal in the time-frequency domain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(5): 1612-1618.

    Google Scholar

    [16] Cai H P, He Z H, Huang D J. Seismic data denoising based on mixed time-frequency methods[J]. Applied Geophysics, 2011, 8(4): 319-327.

    Google Scholar

    [17] Amir N S M, Saman G, Roshandel K A, et al. Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition[J]. Geophysics, 2016, 81(2): 117-124.

    Google Scholar

    [18] Oliveira M S, Henriques M V C, Leite F E A, et al. Seismic denoising using curvelet analysis[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(5): 2106-2110.

    Google Scholar

    [19] Deng L, Yuan S Y, Wang S X. Sparse bayesian learning-based seismic denoise by using physical wavelet as basis functions[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 1993-1997.

    Google Scholar

    [20] Bing P P, Liu W, Zhang Z H. A robust random noise suppression method for seismic data using sparse low-rank estimation in the time-frequency domain[J]. IEEE Access, 2020, 8: 183546-183556.

    Google Scholar

    [21] Gao J J, Aaron S, Sacchi M D. Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising[J]. Geophysics, 2015, 80(6): 173-187.

    Google Scholar

    [22] Nadia K, Sacchi M D. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation[J]. Geophysics, 2012, 77(3): 113-122.

    Google Scholar

    [23] Xu P C, Lu W K, Wang B F. Seismic interference noise attenuation by convolutional neural network based on training data generation[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 741-745.

    Google Scholar

    [24] Yu S W, Ma J W, Wang W L. Deep learning for denoising[J]. Geophysics, 2019, 84(6): 333-350.

    Google Scholar

    [25] Zhang M, Liu Y, Chen Y K. Unsupervised seismic random noise attenuation based on deep convolutional neural network[J]. IEEE Access, 2019, 7: 179810-179822.

    Google Scholar

    [26] 梁立锋, 刘秀娟, 张宏兵, 等. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.

    Google Scholar

    [27] Liang L F, Liu X J, Zhang H B, et al. A study of the effect of hyperparameters GRU-CNN hybrid deep learning EI inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 133-139.

    Google Scholar

    [28] Meng F L, Fan Q Y, Li Y. Self-supervised learning for seismic data reconstruction and denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2021: 1-5.

    Google Scholar

    [29] Stephen A. Generative adversarial networks in seismic data processing[M]// Society of Exploration Geophysicists, 2018:1991-1995.

    Google Scholar

    [30] Vicente O, Mauricio S. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[J]. Geophysics, 2011, 76(3): 25-32.

    Google Scholar

    [31] Chen Y K, Zhou Y T, Chen W, et al. Empirical low-rank approximation for seismic noise attenuation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4696-4711.

    Google Scholar

    [32] Cai J F, Candès E J, Shen Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.

    Google Scholar

    [33] Ankit P, Selesnick I W. Enhanced low-rank matrix approximation[J]. IEEE Signal Processing Letters, 2016, 23(4): 493-497.

    Google Scholar

    [34] Lu C Y, Zhu C M, Xu C Y, et al. Generalized singular value thresholding[J]. arXiv e-prints, 2015,(12).

    Google Scholar

    [35] Rick C. Nonconvex splitting for regularized low-rank+sparse decomposition[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5810-5819.

    Google Scholar

    [36] Gu S H, Zhang L, Zuo W M, et al. Weighted nuclear norm minimization with application to image denoising[C]// 2014 IEEE Conference on Computer Vision and Pattern recognition, 2014.

    Google Scholar

    [37] Zhang S A, Yin P H, Xin J. Transformed schatten-1 iterative thresholding algorithms for low rank matrix completion[J]. arXiv e-prints, 2015: 1506-4444.

    Google Scholar

    [38] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.

    Google Scholar

    [39] Ewout V B, Michael P F. Probing the pareto frontier for basis pursuit solutions[J]. Siam J. Sci. Comput., 2008, 31(2): 890-912.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(519) PDF downloads(89) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint