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Landslide is a serious natural disaster next only to earthquake and flood, which will cause a great threat to
people’s lives and property safety. The traditional research of landslide disaster based on experience-
driven or statistical model and its assessment results are subjective , difficult to quantify, and no
pertinence. As a new research method for landslide susceptibility assessment, machine learning can greatly
improve the landslide susceptibility model’s accuracy by constructing statistical models. Taking Western
Henan for example, the study selected 16 landslide influencing factors such as topography, geological
environment, hydrological conditions, and human activities, and 11 landslide factors with the most
significant influence on the landslide were selected by the recursive feature elimination (RFE) method.
Five machine learning methods [Support Vector Machines (SVM), Logistic Regression (LR), Random
Forest (RF), Extreme Gradient Boosting (XGBoost), and Linear Discriminant Analysis (LDA)] were used
to construct the spatial distribution model of landslide susceptibility. The models were evaluated by the
receiver operating characteristic curve and statistical index. After analysis and comparison, the XGBoost
model (AUC 0.8759) performed the best and was suitable for dealing with regression problems. The
model had a high adaptability to landslide data. According to the landslide susceptibility map of the five
models, the overall distribution can be observed. The extremely high and high susceptibility areas are
distributed in the Funiu Mountain range in the southwest, the Xiaoshan Mountain range in the west, and
the Yellow River Basin in the north. These areas have large terrain fluctuations, complicated geological
structural environments and frequent human engineering activities. The extremely high and highly prone
areas were 12043.3 km? and 3087.45 km?, accounting for 47.61% and 12.20% of the total area of the study
area, respectively. Our study reflects the distribution of landslide susceptibility in western Henan Province,
which provides a scientific basis for regional disaster warning, prediction, and resource protection. The
study has important practical significance for subsequent landslide disaster management.

©2023 China Geology Editorial Office.

1. Introduction

2001). As the most serious geological hazard, landslide
hazard has posed a severe threat to the safety of people’s lives

Landslide is a complex geological evolution process
induced by geologic structure, precipitation, and other internal
and external factors. It is found at the junction of geological
tectonic units, the region through large fracture zones, and the
lowland of road excavation and slope collapse (Causes L,
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and property because of its wide distribution, sudden
occurrence, colossal destruction and unpredictability (Dai FC
et al., 2002; Yu FD et al., 2023). China is one of the countries
suffering most seriously from landslide disaster in the world.
In 2021, there were 4722 geological hazards in China, of
which 2335 were landslide hazards, accounting for 49.4% of
the total (Ministry of Natural Resources of the People ’s
Republic of China, 2022). Many methods for landslide
activity monitoring have been used to reduce the enormous
losses caused by landslides, and these methods have achieved
specific effects. Early landslide hazard research mainly
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focused on landslide prediction and risk assessment through
landslide hazard evaluation and landslide mapping (Guzzetti
F, 2006). With the development of landslide monitoring
technology, people use different methods, such as geodetic
surveying, digital photogrammetry, remote sensing, etc. to
monitor the structural deformation and surface displacement
during landslides, and use the statistical analysis methods to
predict landslide (Savvaidis PD, 2003). Traditional landslide
hazard research is helpful in mastering and analyzing the
characteristics of the landslide. However, it can only be used
to monitor the proved landslide sites in the local scope, and
has the defects of low monitoring efficiency and susceptibility
to external conditions, and is unable to accurately predict the
overall change characteristics of landslide at regional scale.
With the development of digital technology and computer
science, the scale of landslide research has changed from
large-scale to fine-scale. In the last decade, the research
direction has changed from monitoring the evolution of
potential landslide to predicting landslide susceptibility. The
research method has also changed from the analysis and
statistics based on landslide data to the assessment of
landslide susceptibility based on machine learning (Bao H et
al., 2022).

Landslide susceptibility assessment is the basis of regional
landslide risk assessment, prevention and control. It is
essential to predict the spatial probability of landslide
occurrence. Accurate landslide susceptibility assessment can
provide adequate technical for disaster prevention and
mitigation (Brabb EE, 1987). Based on the investigation of
landslide hazards in the study area, researchers can obtain the
landslide susceptibility assessment results by analyzing the
internal and external factors affecting landslides, and
statistical analysis of the landslide probability caused by the
multiple landslide influencing factors wunder certain
conditions. Based on the division of assessment units and the
selection of environmental factors in the study area, an
appropriate model is selected to evaluate the landslide
susceptibility. Western Henan is in the transitional zone from
the second step of the terrain to the third step. The
geomorphic conditions are very complex, and it is located in
the boundary zone between subtropical zone and warm
temperate zone, and has significant differences in climate,
vegetation, hydrology, and soil. With the continuous expand
of urbanization, various large-scale engineering activities also
increases the frequency of landslide hazards, which will
directly threaten the safety of engineering activities, the
ecological environment and people’s lives and property. The
intensity of landslide hazards in Henan Province is above the
middle level in the whole country, and Western Henan is
more susceptible to landslide in this province. For example, a
large bedrock landslide in the east of the Xiaolangdi Reservoir
Dam seriously affected the operation of water conservancy
hub and traffic (Xu W et al., 2014). And in July 2007, heavy
precipitation in Lushi County caused a landslide in north of
Western Henan Grand Canyon, covered roads and trapping
thousands of people inside the canyon.

Landslide sensitivity assessment based on the machine
learning model can more accurately calculate the multivariate
complex nonlinear relationship  between landslide
susceptibility and environmental factors. At the same time, it
does not require the normal distribution of environmental
factors and is suitable for large scale (Brenning A, 2005). Due
to the uniqueness of landslide data in different regions, the
applicability of models is different, so there is no universal
applicability of optimal assessment model. In this study,
various machine learning models were established after
screening landslide susceptibility —assessment factors,
including Support Vector Machines (SVM), Logistic
Regression (LR), Random Forest (RF), Extreme Gradient
Boosting (XGBoost) and Linear Discriminant Analysis
(LDA). Through establishing a landslide susceptibility model,
this study simulated the spatial location of the potential
landslide susceptibility area, and the model accuracy was
verified by receiver operating characteristic (ROC) curve and
statistical index to obtain the most suitable model for the data
in the study area. The assessment of landslide susceptibility
based on a machine learning model in Western Henan has
important practical significance for regional landslide disaster
management, which provides technical support for disaster
warning and resource protection in Henan.

2. Geological Background
2.1. Geographical Environment

Western Henan refers to Luoyang and Sanmenxia region
in the west of Henan Province, with a longitude of
110°21'18"-112 °58' 48" E and latitude of 33°34 '12 "-35 °4'
52" N, covering an area of 25539 km?. It is in the middle
latitude region and belongs to the boundary zone between
subtropical and warm temperate zones. The annual average
temperature in Western Henan is 13.8°C, gradually
decreasing from south to north. It is a wet-subhumid monsoon
climate, and the climate boundary is in the Funiu Mountain
ridge within the region. The spatial variation of precipitation
in Henan Province is very great, the precipitation is high in
the south, less in the north, high in hilly and mountainous
areas, and less in the plain. The annual precipitation in the
mountainous areas of Western Henan is 700-900 mm. The
Funiu Mountain area in Western Henan is the watershed of
the Yangtze, Yellow and Huai Rivers, and the origin of most
rivers in Henan Province. The rivers in the area are radially
distributed from west to east, while the rivers cut deep into the
terrain, creating favorable conditions for the landslide
disasters.

2.2. Geomorphology

As an important geoenvironmental condition, the type and
spatial distribution of geological geohazards are greatly
controlled by the geomorphological factors, spatial
distribution and their inter-combination. Western Henan is in
the transition zone of the second and third steps, with
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immense relief, complex geological environment and
significant spatial-temporal differences in climate , which are
prone to landslide hazards. The number of landslide hazards
in the mountains and hills of Western Henan accounts for
about 40% of the total landslide hazards in Henan Province.
The main peaks in Western Henan are more than 1500 m
above sea level, and some of them are more than 2000 m
above sea level.

2.3. Regional Geology

The strata is fully developed in Western Henan, except for
the Upper Ordovician, Upper Silurian and Lower Devonian,
which are missing, and are exposed from the Archaeozoic to
the Cenozoic. The structure of rock mass is fragile and prone
to landslide hazards. The tectonic traces of the fractured zones
affecting the western part of Henan are crisscrossed in a
variety of ways. The neotectonic in Henan Province is
characterized by vertical movements, which not only deform
the strata but also evolve the paleogeography by the upward
and downward movements of the crust. The surface formed
by landslide hazards provides convenient conditions for
developing subsequent disasters.

2.4. Hydrogeology

The major rivers in Henan all originate in the mountainous
region of Western Henan, and the mountains and valleys are
distributed alternately. In the terms of hydrogeology, the
precipitation is the main factor in landslide hazards. The
water-bearing rock groups in Western Henan mainly include
loose rocks, carbonates, clastic rocks and fractured rocks such
as metamorphic rocks and magmatic rocks. The distribution
and migration of groundwater in fractured rocks such as
carbonate rocks, metamorphic rocks and magmatic rocks
distributed in Western Henan greatly influence the stability of
rock and soil mass.

3. Research Methods

This study analyzed landslide susceptibility through six
steps (Fig. 2): (1) Prepare the geospatial database. (2) Use the
feature selection method to select appropriate landslide-
affecting factors for landslide analysis. (3) Prepare training
and testing datasets. (4) Construct landslide models. (5)
Verify and comparing landslide models. (6) Draw landslide
susceptibility maps (LSM).

3.1. Preparation of geospatial database

The study constructs a landslide spatial database as the
data basis for analyzing the landslide hazards environment in
Western Henan. The spatial database contains the spatial data
of geological environment, landslide disaster points and
landslide-influencing factors in the study area.

The landslide disaster points are extracted from the
distribution data of geological disaster points in Western

Henan through a geographic remote sensing ecological
network. The landslide data was processed using the World
Imagery Wayback tool in ArcGIS software to verify the
accuracy of the landslide location based on historical map
image data and landslide list. A total of 256 landslide points
with a pixel size of 30 mx30 m were selected for landslide
modeling analysis (Fig. 1). Landslide development is
influenced by the combination of internal and external factors.
The internal factors include rock mass structure and
geotechnical properties, which play a controlling role in the
slope ’s stability. The external factors include precipitation,
rock weathering, human activities, etc. The terrain feature is
one of the main influencing factors of landslide formation
(Zheng X et al., 2021). According to the geological
characteristics and historical landslide data in Western Henan,
this study selected 16 landslide-affecting factors (slope angle,
slope aspect, elevation, curvature, plan curvature, profile
curvature, soil type, land cover, annual precipitation,
lithology, distance to faults, distance to roads, distance to
rivers, lineament density, road density and river density)
based on the mechanism of the landslide (Table 1), and the
typical influencing factors are shown in Fig. 3. The elevation,
curvature, plan curvature, profile curvature, slope angle and
slope aspect are extracted by 30m precision DEM digital
elevation data using ArcGIS.

Based on landslide susceptibility analysis, different
affecting factors were classified as follows (Fig. 3).

3.2. Model construction using machine learning algorithms

3.2.1. Support Vector Machines (SVM)

Support Vector Machine is a statistical learning method
based on the principle of structural risk minimization and
aiming at constructing the optimal hyperplane (Vapnik V,
1999). It can effectively process nonlinear data to improve
classification observation results and is especially suitable for
data processing with small sample sets (Noble WS, 2000).

The basic principles of SVM is that, for linear unfractional
data {x;,y;};x; € R%,y; € {~1,+1}, 1 is the number of samples; d
is the data dimension, and the original data needs to be
mapped into a feature space by a nonlinear mapping @(x).
w-e(x)+b=0 is a hyperplane equation.In this case, the
classification interval is equal to 2/||w||. To maximize 2/||w||,
we can set || w|[/2 minimized, and the classification line must
satisfy the constraints:

yilw-x;+b) > 1 —€(g > 0)

Where: ¢ is the slack variable. While solving the
classification hyperplane, the value ¢ is as small as possible
(Oommen T et al., 2008).

3.2.2. Logistic Regression (LR)

The Logistic Regression model is used to handle an
independent variable with multiple unrelated models of
multivariate regression relationship between independent

variables.'!l The independent variables in the logistic
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Fig. 1. Geographical location of the study area in Henan Province (a) and location of landslide in the study area (b).

regression model do not need to meet the normal distribution,
and the independent variables are the assessment factors that
affect the landslide unit and the non-landslide unit
respectively. At the same time, the dichotomous problem of
whether a landslide occurs is solved (Bui DT et al., 2011),
which is between 0 and 1 (0 is the non-landslide unit, and 1 is
the landslide unit). The probability of landslide occurrence is
set as P, then the probability of landslide non-occurrence is Q=
1-P, and Logit transformation is performed on P. Then the
regression equation is obtained,

LOgitP =)+ alej + 212X2j +-o+ aanj

that is,

exp(a, +a; Xy; + a, Xy + - +a,X)
1 + eXp(aO + alxlj + a2X2j +---+ aanj)

where, landslide probability P is the dependent variable,
influencing factor set [X,, Xy, ---,X,] is the independent
variable, and Logit P is the objective function of landslide
probability, which is expressed as a linear combination of
independent variables of each factor. a,,a,,---,a,are logistic
regression coefficients, and a, is a constant, representing the
logarithm value of the ratio between the probability of
landslide occurrence and non-occurrence under the condition
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Fig. 2. Method adopted in the present study .

Table 1. Data sources of landslide points and landslide affecting factors.

413

Landslide affecting
factors

Data acquisition

Data sources

Landslide points

Elevation

Slope

Slope aspect
Curvature

Plan curvature
Profile curvature
Soil type

Land cover
Annual precipitation
Lithology

Distance to faults

Distance to roads

Distribution data of geological disaster points in Western
Henan

DEM digital elevation data with 30 m accuracy in Western
Henan

Soil type distribution data with 30 m precision in Western
Henan

Land cover data with 30 m accuracy in Western Henan
Precipitation data of 30 years in Western Henan
Lithologic data of Western Henan

Data of water system, traffic, settlement and land use with 30
m accuracy in Western Henan

Geographic Remote sensing Ecological network
(http://www.gisrs.cn)
Geospatial Data Cloud (http://www.gscloud.cn)

HWSD Soil Database

Global Soil Cover Database (http://www.globallandcover.com)
NCDC Exposes FTP Servers

Data Center for Resources and Environmental Sciences, Chinese
Academy of Sciences (http://www.resdc.cn)

National Geographic Information Resources Directory Service
System (https://www.webmap.cn)

Distance to rivers
Lineament density
Road density
River density
Fault density

that it is not affected by any landslide occurrence factor
(Budimir MEA et al., 2015).

3.2.3. Random Forest (RF)

Based on the idea of parallel ensemble learning, Random
Forest takes the decision tree as the basic model and
constructs a set of decision tree models without strong
dependence on each other by constructing different training
datasets and feature spaces (Breiman L, 2001).

RF classification uses bootstrap sampling to extract k
samples (generally 2/3) from the original training set T to
generate a new training sample set and builds k decision tree
models for each k samples to obtain k classification results.
The classification error depends on the classification ability of
each tree and the correlation between them. Finally, each

record is voted on according to k classification results to
determine its final classification. Many theoretical and
empirical studies have proved that the random forest
algorithms have high prediction accuracy, good tolerance to
outliers and noise, and are one of the best machine learning
classification and regression models (Tibshirani R, 1996).

3.2.4. Extreme Gradient Boosting (XGBoost )

Extreme Gradient Boosting (XGBoost) is a machine-
learning framework based on a gradient-lifting decision tree
(Friedman JH, 2001). XGBoost expands and optimizes its
structure, executes a quadratic Taylor expansion on the loss
function, and uses the information of the first and second
derivatives to automatically use the multi-thread parallel
computation of the CPU during training (Chen T and Guestrin
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Fig. 3. Affecting factors of typical landslides.

G, 2016). In addition, to prevent over-fitting, XGBoost adds a ~ nodes in the CART tree, w is the weight of leaf nodes in each
regular penalty term to the loss function to reduce the  CART tree, / is the loss function, representing the error
complexity of the model and adopts the row and column between the predicted value and the observed value, Q is a

sampling method to sample the model (Friedman JH, 2002).
Its advantages are that computing resources are small,
efficient and flexible, and easy to run (Fan Z et al., 2011).

The objective function is:
£@) =) IGi+y)+>_Q(f)
i j

Q(f,):YT+§w2

regular penalty term function used to prevent overfitting,
which can effectively limit the number of leaf nodes.

3.2.5. Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis is a generalization of Fisher’
s linear discriminant method, which uses statistical, pattern
recognition and machine learning methods to find a linear
combination of features that can characterize two classes of
objects or events or distinguish between them. The resulting

where: Y is penalty coefficient, T is the number of leaf combination can be used as a linear classifier to reduce the
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dimensionality of subsequent classification (Sharma A and
Paliwal KK, 2015). Based on a given set of training samples,
linear discriminant analysis tries to project the samples onto a
straight line so that the projection points of similar samples
are as close as possible, and those of different samples are as
far away. When classifying the new samples, they are
projected onto the same line, and then the category of the new
samples is determined according to the position of the
projection points.

3.3. Assessment and comparison methods

The training and testing data sets were used to compare
the spatial prediction ability of each landslide model. The
training data set is used for modeling to reflect the degree of
fitting of the model to the data, while the test data set is used
to reflect the model's prediction ability. In this study, the
performance of the five landslide models was compared by
statistical index-based assessment and ROC curve.

3.3.1. Statistical index based assessments

In this study, the performance of the landslide models was
verified by determining the statistical indicators: the
sensitivity, specificity, accuracy and root mean square error.
Sensitivity refers to how many positive examples in the
sample are predicted correctly by the landslide models, which
indicates the predictive ability of the landslide models for the
classification of landslide pixels (Bennett ND et al., 2013).
Specificity refers to how many negative examples are in the
sample after the landslide models are predicted correctly,
which indicates the predictive ability of the landslide models
for non-landslide pixel -classification. Accuracy is the
proportion of correctly classified landslide and non-landslide
pixels, indicating the performance of the landslide models.
And root means square error shows the error measure of the
same unit as the original data. The smaller the RMSE value,
the better the performance of the landslide models.

3.3.2. Receiver operating characteristic (ROC) curve

ROC curve is a method to verify the landslide model
based on the confusion matrix. It is a curve drawn according
to several different binary classification limit worth
(thresholds), with the rate of increase (sensitivity, TPR) as the
ordinate and the false positive rate (1-specificity, FPR) as the
abscissa. ROC curve can easily detect any threshold's
influence on the learner's generalization performance, which
helps select the best threshold. The closer the ROC curve is to
the upper left, the higher the accuracy of the model, and the
point on the ROC curve closest to the upper left is the best
threshold with the fewest classification errors. The area
enclosed by the ROC curve and the coordinate axes (AUC)
can directly reflect the classification ability expressed by the
ROC curve. The closer the AUC is to 1.0, the higher the
authenticity of the detection method is. It has no authenticity
and application value when it is equal to 0.5. The ROC curve
is simple and intuitive, and the accuracy can be judged and
analyzed by the naked eye (Cantarino [ et al., 2019).

4. Model study and analysis
4.1. Selecting landslide affecting factors

In this study, a total of 16 geological and environmental
factors (slope, aspect, elevation, curvature, plane curvature,
profile curvature, soil type, land cover, annual precipitation,
lithology, distance to linear structure, distance to road,
distance to river, line density, road density and river density)
were selected as landslide influencing parameters. However,
these geological and environmental factors may have different
influence on the landslide model. Now, the recursive feature
elimination (RFE)method is used to repeatedly build the
model to evaluate these landslide influencing parameters,
eliminate unimportant or irrelevant factors, further fit the
critical influencing factors, and finally select the best feature
subset in the classification. The RFE method needs to build a
training classifier, calculate the importance measure of
features, remove the irrelevant features with low importance
measure, and then repeat this process until the best feature
subset is selected (Munasinghe K and Karunanayake P, 2021).
The RFE method obtained the relative importance of each
influence factor (Fig. 4). The higher the value, the stronger the
impact on the landslide model. Finally, 11 landslide affecting
factors (slope angle, elevation, curvature, plan curvature,
profile curvature, land cover, lithology, distance to roads,
distance to faults, road density and river density) were
selected for landslide modeling.

4.2. Training and validating landslide models

ROC is used in machine learning to judge the merit of
classification and detection results. It is mainly analyzed by
ROC curves on a two-dimensional plane. The horizontal
coordinate of the plane is the false positive rate (FPR) and the
vertical coordinate is the true positive rate (TPR). It can be
mapped to a point on the ROC plane based on the
performance of the classifier on the test sample. By adjusting
the threshold used in classifying this classifier, we get a curve
that passes through (0, 0), (1, 1), which is the ROC curve of
this classifier. The two most important metrics within the
ROC are,

. TP
True positive rate: TPR = R
TP+FN
o FP
False positive rate: FPR= ———,
TN + FP

Where, TP denotes positive samples predicted by the
model as positive class; FN denotes positive samples
predicted by the model as negative class; FP denotes negative
samples predicted by the model as positive class; TN denotes
negative samples predicted by the model as negative class.
TPR focuses on the correct rate and FPR focuses on the error
rate. Ideally, the larger the TP and TN, the better, and the
smaller the FP and FN, the better. That is, in the ROC graph,
the closer the point to (0, 1) corresponds to the better
classification performance of the model.

The proposed prediction model for landslide susceptibility
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Fig. 4. Importance ranking of landslide affecting factors based on RFE.

was constructed by generating training and testing datasets.
The training dataset is used to train the landslide models,
while the test dataset is used to verify the performance of the
landslide models. The 256 landslide points were randomly
assigned into two parts. 70% of the points were used as the
training dataset, and the remaining 30% were used as the test
dataset. Then 70% of the non-landslide data set was selected
to generate the training dataset and 30% to construct the test
dataset. Landslide influencing factor data shall be sampled to
generate the final data set. The training and testing datasets
were used to analyze the performance of five machine
learning methods. The results showed that the ROC curves of
different models were analyzed using the training datasets.
The highest values belong to the RF model and XGBoost
model (AUC 1.0000), followed by the SVM model (AUC
0.9844), LDA model (AUC 0.8903) and LR model (AUC
0.8796). Using the test dataset to analyze the ROC curves of
different models (Fig. 5), it can be observed that the highest
value belongs to the XGBoost model (AUC 0.8759), then RF
model (AUC 0.8743), LDA model (AUC 0.8685), LR model
(AUC 0.8624) and SVM model (AUC 0.7666) were followed.
It can be analyzed that the XGBoost model has the best
predictive ability.

ROC Validation
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Fig. 5. The ROC curves of different landslide models using testing
dataset.

4.3. Drawing landslide susceptibility maps

The landslide susceptibility were mapped based on five
landslide models. By generating a landslide susceptibility
index (LSIs), a unique sensitivity index is assigned to each
pixel in the study area. Then the geometric interval (GI) tool
of ArcGIS was used to reclassify LSIs into different intervals.
Based on the LSIs interval, five susceptibility grades were
determined: Very low, low, moderate, high and very high for
dividing landslide susceptibility (Fig. 6).

In addition, five landslide sensitivity maps were combined
with slope maps to determine slope intervals more prone to
landslides (Fig. 7). The overlay analysis of results confirms
that most landslides have occurred in the susceptibility grades
of very high and high , which are associated with the
moderate slope of the ground varying from 10° to 30°.

5. Discussions

Compared with traditional landslide susceptibility
prediction, machine learning methods have better nonlinear
prediction ability in solving many practical problems. This
study evaluated and compared five machine learning methods
(SVM, LR, RF, XGBoost and LDA). Among them, RF, SVM,
and LR have been widely used in the spatial prediction of
landslide susceptibility. XGBoost and LDA methods have
also been successively applied in geological hazard
assessment. In this study, recursive feature elimination
method (RFE) was used to evaluate the impact degree of
landslide influencing parameters, eliminate unimportant
factors, further fit important influencing factors, and finally
select the best feature subset in the classification. The results
showed that among the 16 landslide impact factor, 10 factors
(slope angle, elevation, curvature, plan curvature, profile
curvature, land cover, lithology, distance to roads, road
density and river density) are relatively high importance to the
landslide prediction model, so these factors are used to train
the landslide model. The accuracy was verified by the ROC
curve and statistical index-based method. And after analysis
and comparison, it is concluded that the XGBoost model
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Fig. 6. Landslide susceptibility maps of different landslide models.

(AUC 0.8759) has the best performance and is suitable for
dealing with regression problems and has high adaptability to
landslide data. However, the XGBoost model needed to
consider the situation of time consumption and insufficient
memory when training big data. RF model (AUC 0.8743) also
performs well. When the amount of data is large, and the
processing speed is considered, the RF model can be used to
solve practical problems.

6. Conclusions

According to the landslide susceptibility map of the five
landslide models, the overall distribution trend can be
observed. The extremely high and high susceptibility areas are
distributed in the Funiu Mountain range in the southwest, the
Xiaoshan Mountain range in the west and the Yellow River

basin in the north. These areas have large terrain fluctuations,
complicated geological structural environments and frequent
human engineering activities. The moderately-prone areas are
distributed in valleys such as the Luohe and Yinhe rivers. The
low- and very-low-prone areas are distributed in the eastern
part of Luoyang Basin, where the terrain is flat and open, and
landslide hazards are rare. The prediction results of the
XGBoost model and RF model were compared and analyzed.
According to the XGBoost prediction distribution map,
landslide development was concentrated in high—extremely
high prone areas, the spatial distribution of landslide-prone
areas was tree-like, and high—extremely high prone areas were
concentrated in mountainous and hilly areas. According to the
distribution map of RF prediction, the landslide development
is scattered in the high—extremely high prone area. In the
western Xiaoshan Mountains, where landslides are easily
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induced, the region’s edge areas are divided into medium-
low-prone areas. Its accuracy is not as good as that of the
XGBoost model, so the XGBoost model is more suitable for
the landslide susceptibility assessment in this region.
Therefore, in the practical application of landslide
susceptibility spatial prediction, the XGBoost model can be
used to evaluate and develop a better landslide susceptibility
map. On this basis, appropriate landslide disaster management
can be carried out.

After years of geological hazard risk assessment
development, traditional landslide hazard research is often
based on empirical driving or theoretical statistical models,
and the assessment results are subjective and difficult to
quantify. Machine learning can combine landslide hazards
and affecting factors through data processing, solve the
nonlinear relationship in the affecting factors, and greatly
improve the precision and accuracy of the landslide
susceptibility model. Based on a variety of machine learning
model, this study has better predicted landslides liability
distribution of Western Henan, and analyzed that the
XGBoost model is most suitable for the landslide liability
assessment in Western Henan, which provides a scientific
basis for disaster warning and prediction and resource
protection in Henan Province, and has important practical
significance for regional landslide disaster management.
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