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The Dayin’gezhuang gold deposit is located in the central part of the Zhaoping Fault metallogenic belt in
the Jiaodong gold province—the world’s third-largest gold metallogenic area. It is a typical successful
case of prospecting at a depth of 500—2000 m in recent years, with cumulative proven gold resources
exceeding 180 t. The main orebodies (No. 1 and No. 2 orebody) generally have a pitch direction of NNE
and a plunge direction of NEE. As the ore-controlling fault, the Zhaoping Fault is a shovel-shaped stepped
fault, with its dip angle presenting stepped high-to-low transitions at the elevation of —2000—0 m. The gold
mineralization enrichment area is mainly distributed in the step parts where the fault plane changes from
steeply to gently, forming a stepped metallogenic pattern from shallow to deep. It can be concluded from
previous studies that the gold mineralization of the Dayin’gezhuang gold deposit occurred at about 120
Ma. The ore-forming fluids were H,0-CO,-NaCl-type hydrothermal solutions with a medium-low
temperature and medium-low salinity. The H-O isotopic characteristics indicate that the fluids in the early
ore-forming stage were possibly magmatic water or mantle water and that meteoric water gradually
entered the ore-forming fluids in the late ore-forming stage. The S and Pb isotopes indicate that the ore-
forming materials mainly originate from the lower crust and contain a small quantity of mantle-derived
components. The comprehensive analysis shows that the Dayin ’gezhuang gold deposit was formed by
thermal uplifting-extensional tectonism. The strong crust-mantle interactions, large-scale magmatism, and
the material exchange arising from the transformation from adakitic granites to arc granites and from the
ancient lower crust to the juvenile lower crust during the Early Cretaceous provided abundant fluids and
material sources for mineralization. Moreover, the detachment faults formed by the rapid magmatic uplift
and the extensional tectonism created favorable temperature and pressure conditions and space for fluid
accumulation and gold precipitation and mineralization.

©2022 China Geology Editorial Office.

1. Introduction

metallogenic area, where three kiloton-class gold orefields,
i.e., Sanshandao, Jiaojia, and Linglong, have been

The Jiaodong gold province, with more than 5000 t of successively discovered ( Deng J et al., 2019; Song MC et al.,

proven gold resources, is the world ’s third-largest gold 2021a, 2022a; Yue XF et al.,, 2020). The Dayin ’gezhuang
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gold deposit is located in the central part of the Zhaoping
Fault metallogenic belt in the Jiaodong gold province. More
than 50 t of gold resources were discovered in this deposit in
the 1970s. With the implementation of the strategy for deep
deposit prospecting and the National Exploration &
Development Planning, great progress has been made in the
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deep and peripheral prospecting of the Dayin’gezhuang gold
deposit since the 21% century. At present, this deposit has
cumulative proven gold resources of more than 180 t, making
it the largest gold deposit in the central portion of the
Zhaoping Fault zone.

A lot of studies have been conducted on the Dayin ’
gezhuang gold deposit (Li H et al., 1998; Shen K et al., 2000;
Li DX et al., 2006; Wang QF et al., 2007; Yang LQ et al.,
2009; Deng J et al., 2011; Yang LQ et al., 2014a; Liu Y et al.,
2014; Zhang L et al., 2014; Zhang RZ et al., 2016; Zhang BL
etal., 2017; Chai P et al., 2019a, 2019b; Mao XC et al., 2019,
2020; Yuan ZZ et al., 2019; Chen J et al., 2020a, 2020b; Deng
H et al., 2020; Wei YJ et al., 2020, 2022; Shen YK et al.,
2022; Xie TC et al., 2022), achieving many important results
on ore-controlling factors, alteration and mineralization
characteristics, metallogenic age, ore-forming stages, ore
deposit geochemistry, ore-forming fluids, and ore-forming
material sources. However, previous studies are mainly based
on the exploration results at an elevation of —800—0 m, while
lacking  systematic analysis of deep metallogenic
characteristics and the spatial occurrence patterns of
orebodies. In recent years, the authors of this paper have
completed gold exploration at an elevation of —2000—0 m in
the Dayin’gezhuang gold deposit and systematically revealed
the deep characteristics of the deposit. This paper
systematically reviewed the main achievements in shallow
prospecting in the past and deep prospecting in recent years in
the Dayin ’gezhuang gold deposit, expatiated the main
characteristics of the deposit, analyzed the spatial distribution

previous study results on metallogenic age and ore deposit
geochemistry. Based on these, the ore-controlling regularity
of faults and the metallogenic age were analyzed, the
properties and sources of the ore-forming fluids and the
sources of the ore-forming materials were discussed, and the
genetic model of the Dayin’gezhuang gold deposit was finally
proposed. This paper is significant for deeply understanding
the metallogenic regularity and formation mechanisms of
Jiaodong gold deposits and for guiding deep prospecting.
Moreover, it provides a typical model for deepening research
on the mineralization of the Jiaodong gold deposits—Mesozoic
gold deposits in the Precambrian metamorphic basement.

2. Regional geology

The Jiaodong gold province, where the Dayin ’gezhuang
gold deposit is located, experienced multi-phase tectonic
superposition. In particular, the strong Yanshanian tectono-
magmatic movement caused the Mesozoic metallogenic
explosion (Mao JW et al., 1999; Zhai MG et al., 2004). The
Jiaodong Peninsula is mainly composed of two tectonic units,
1.e., the Jiaobei Terrane in the North China Plate and the Sulu
Terrane in the Qinling-Dabie-Sulu Orogen (Fig. 1; Yang LQ
et al., 2014b; Deng J et al, 2020a, 2020b; Fan HR et al.,
2021). The Jiaobei Terrane, located on the southeastern
margin of the North China Plate, consists of the Jiaobei uplift
in the north and the Jiaolai Basin in the south. The Sulu
Terrane, located on the northeastern margin of the Qinling-
Dabie-Sulu Orogen, mainly consists of the Weihai uplift. The
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metamorphic basement rocks and Mesozoic intrusions, with a
small amount of Paleogene-Neogene volcanic rocks and
clastic sediments and Quaternary loose sediments distributed
in the coastal area. The Precambrian metamorphic basement is
mainly composed of the amphibolites (metagabbros), biotite
leptynites, and plagiogneisses of the Neoarchean Jiaodong
Group, the Neoarchean gneisses of tonalite-trondhjemite-
granodiorite (TTG) affinity (the TTG gneisses), the marbles,
schists, diopsides, and leptynites of the Paleoproterozoic
Jingshan and Fenzishan groups, and the metamorphic
sedimentary rocks of both the Mesoproterozoic Zhifu Group
and the Neoproterozoic Penglai Group. The Jiaolai Basin is a
Cretaceous continental basin composed of continental
volcanic-sedimentary rocks, including the Early Cretaceous
Laiyang and Qingshan groups and the Late
Cretaceous—Paleocene Wangshi Group (Li SJ et al., 1998; Li
JL et al., 2007; Ren FL et al., 2008). The Weihai uplift, as a
part of the Triassic collisional orogenic belt between the
North China Plate and the Yangtze Block, is mainly
composed of the ultrahigh-pressure metamorphic belts and
Mesozoic intrusions. The ultrahigh-pressure metamorphic belt
is mainly composed of Neoproterozoic granitic gneisses and a
small quantity of Neoarchean-Paleoproterozoic metamorphic
supracrustal rocks and is interbedded with eclogites and
mafic-ultramafic rock lenses (Ames L et al., 1996; Liu LS et
al., 2018). This metamorphic belt underwent eclogite-facies
ultrahigh-pressure metamorphism at 240-220 Ma (Wallis et
al., 1999). Mesozoic intrusions are widely distributed in the
Jiaodong area and can be divided into Upper Triassic granites
(Shidao rocks; Chen JF et al., 2003; Gao TS et al., 2004; Guo
JH et al., 2005; Chen JZ and Jiang N, 2011), Upper Jurassic
granites (Linglong and Wendeng granites; Zhang J et al.,
2010; Jiang N et al., 2012; Ma L et al., 2013; Yang LQ et al.,
2018), Earliest Lower Cretaceous granodiorites (Guojialing
granites; Liu Y et al., 2014; Geng K et al., 2016), and Latest
Lower Cretaceous granites (Weideshan and Laoshan granites;
Guo JH et al., 2005; Goss SC et al., 2010). In addition, a large
number of intermediate-mafic dikes are distributed in the
Jiaodong Peninsula (Deng J et al., 2017). Geological
structures of different ages, levels, properties, and styles
overlap in Jiaodong Peninsula, forming a complex tectonic
framework, which shows the mutual superimposition of E-W-
and NE-NNE-trending structures overall (Deng J and Wang
QF, 2016). The Precambrian tectonic deformation is
characterized by folds and ductile shear zones, forming a
nearly E-W-trending basement. The Mesozoic tectonic
deformation is characterized by brittle faults, which mainly
have a NE-NNE strike, followed by nearly E-W and NW-
NNW strikes, presenting a NE-NNE-trending fault pattern
overall. The large-scale NE-NNE-trending faults include the
Sanshandao Fault, Jiaojia Fault, Zhaoping Fault, Xilin-Douya
Fault, Mouping-Jimo Fault, and Mouping-Rushan Fault from
west to east. These faults control more than 90% of the
proven gold resources in the Jiaodong Peninsula (Deng J and
Wang QF, 2016; Deng J et al., 2019; Ma YX et al., 2021; Yao
XF et al., 2021; Ma XH et al., 2021). The nearly E-W-
trending structures mainly include the nearly E-W-trending

folds along the axial direction in the Precambrian
metamorphic basement and their associated nearly E-W-
trending faults, which jointly form an E-W-trending fold-fault
belt (Deng J et al., 2019). The NW-NWW-trending structures,
with a dip direction of NE or SW, a dip angle of 60°-80°,
several to dozens of kilometers long and dozens to hundreds
of meters wide, are mainly distributed in the northwestern
Jiaodong Peninsula. They are generally post-mineralization
faults (Deng J et al., 2019).

3. Ore deposit geology
3.1. General geology

The Dayin’gezhuang gold deposit is located in the central
part of the Zhaoping Fault zone (Fig. 2a). The footwall of the
Zhaoping Fault zone mainly consists of Upper Jurassic
Linglong granites, which contain massive Mesozoic dikes.
The hanging wall of the Zhaoping Fault zone is mainly
composed of Neoarchean TTG gneisses, with Neoproterozoic
Jingshan Group distributed locally. Fault structures are well
developed, including the dominant NNE-trending Zhaoping
Fault, the NE-trending Houcang and Luanjiahe faults, and the
NW-trending Nanzhoujia, Dayin ’gezhuang, and Nangou
faults (Fig. 2b).

As a major ore-controlling fault in the Jiaodong Peninsula,
the Zhaoping Fault controls the Linglong, Dayin’gezhuang,
Xiadian and Jiudian gold orefields from north to south, with
cumulative proven gold reserves of more than 1000 t (Yu XF
et al., 2018). This fault has a total length of 120 km, a width
of 150200 m, a dip direction of SE-E, and a dip angle of
30°-70°. In the Dayin’gezhuang gold deposit, the Zhaoping
Fault has an outcrop length of approximately 6.8 km, a strike
of 10°-20°, a dip direction of SE, and a dip angle of 10°-58°.
This fault has a sharp dip angle in the shallow part, reaching
more than 50° locally, and its dip angle gradually decreases to
10°-20° in the deep part. Therefore, the Zhaoping fault is a
shovel-shaped fault with a steep upper part and a gentle lower
part. The Zhaoping fault has a width of 40—-80 m generally
and up to 140 m on the surface. It widens toward the depth
part, where it has a width of 50 —-150 m generally and a
maximum of greater than 200 m. A continuous and stable
major fracture plane has developed in the center part of the
Zhaoping Fault and is marked by fault gouges with a
thickness of 0.02—2.00 m. The two sides of the major fracture
plane consist of cataclastic rocks with different fracture
degrees, with early deformed mylonite residues visible locally
under the major fracture plane. The Zhaoping Fault shows the
characteristics of multiphase activities, including left-lateral
transpressional motion before and after the mineralization and
right-lateral transtensional motion during the mineralization
(Lin WW et al., 2000). Moreover, this fault is cut by the
Dayin ’gezhuang and Nanzhoujia faults in the left-lateral
direction.

3.2. Alteration types and alteration zones

The wall rocks of the Dayin ’gezhuang gold deposit
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Fig. 2. a—Geological map of the Zhaoping gold belt; b—geological map of the Dayin’gezhuang gold deposit (modified from Liu XD, 2022).

underwent extensive alterations, forming a large alteration
zone and complete alteration types, which mainly include K-
feldspar alteration, silicification, sericitization, carbonatization,
and chloritization (Zhang BL et al, 2017). Moreover,
sericitization, silicification, and pyritization occur
combination, forming pyrite-sericite-quartz altered rock.
K-feldspar alteration (Figs. 3b, d) is a type of early
hydrothermal alteration and is widely exposed far away from
the major fracture plane. It has a width of up to 50-300 m,
and its alteration intensity gradually weakens with an increase
in the distance from ore-controlling structures. Pyrite-sericite-
quartz alteration (Figs. 3a, c, f) is a predominant type of
alteration. It is closely related to mineralization and is

in

frequently associated with disseminated fine-grained pyrites,
with coarse-grained pyrites occasionally visible. Pyrite-
sericite-quartz alteration tends to gradually weaken toward
both sides with the major fracture plane as the center and is
stronger on the footwall than on the hanging wall
Carbonatization is often interspersed in rocks in the form of
veins and stockworks. Carbonatization is more developed on
the hanging wall. Chloritization is mainly distributed on the
hanging wall and the local fracture plane of the footwall.

The hydrothermal alteration in the Dayin’gezhuang gold
deposit shows significant zoning and gradually weakens

toward both sides from the major fracture plane. Weak
sericitization and chloritization zones are commonly visible
on the hanging wall, which features weak alteration and
mineralization in general. Therefore, large-scale industrial
orebodies rarely occur on the hanging wall. The alteration
zones on the footwall include a pyrite-sericite-quartz altered
cataclastic rock zone, a pyrite-sericite-quartz altered granitic
cataclastic rock zone, a pyrite-sericite-quartz altered granite
zone, a normal Linglong granite zone outward from the major
fracture plane. These alteration zones gradually transition
from one to another (Fig. 4).

3.3. Orebodies and resources

More than 200 gold orebodies have been defined in the
Dayin ’gezhuang gold deposit. Based on their occurrence
locations and geological characteristics, these orebodies can
be divided into No. 1 orebodies which are located to the south
of the Dayin’gezhuang fault, and No. 2 orebodies which are
located to the north of the Dayin’gezhuang fault, respectively
(Fig. 2b).

The No. 1 orebodies mainly occur in the shape of irregular
large veins in the pyrite-sericite-quartz altered cataclastic
rocks on the footwall of the major fracture plane. They are
distributed in a gentle wave pattern along their strike and dip
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Fig. 3. Photographs (a—e) and photomicrographs (f) of typical hydrothermal alteration in the Dayin’gezhuang gold deposit. a—pyrite-sericite-
quartz alteration; b—K-feldspar alteration; c—pyrite-sericite-quartz altered sample cut by calcite veins; d—K-feldspar alteration sample; e—pyrite
veins cut silicified sample; f-typical pyrite-sericite-quartz alteration. Pl-plagioclase, Py—pyrite, Qz—quartz, Ser—sericite.
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direction, with branches and combination as well as swelling
and shrinkage (Fig. 5). They have simple morphologies and
stable distribution, and have a strike of 2°-30° (average: 20°),
a dip direction of SE, and a dip angle of 12°—42° (average:
33°). The occurrence of the orebodies becomes increasingly
gentle from shallow to deep. The No. 1 orebodies are located
at an elevation of +24 — —1750 m and have a maximum length
of 1229 m along their strike and a maximum length of 1236 m
along their dip direction. The thickness of single-drilling-

701

controlled orebody is 0.62—20.70 m overall, 2.24—15.90 m in
general, and 5.30 m on average. The single-sample gold grade
is 1.00-91.50 g/t, with an average of 3.07 g/t.

The No. 2 orebodies mainly occur in the shape of irregular
large veins in the pyrite-sericite-quartz altered cataclastic
rocks and locally extend into the pyrite-sericite-quartz altered
granites on the footwall of the major fracture plane. They are
distributed in a gentle wave pattern along their strike and dip
direction, with branches and combination as well as swelling
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Fig. 5. Combined cross-sections of the Dayin’gezhuang gold deposit.
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and shrinkage (Fig. 5). Their attitude are essentially consistent
with that of the main fracture plane of the Zhaoping fault,
with a strike of 1°-26°, a dip direction of SE, and a dip angle
of 18°-51° (average: 39°). The No. 2 orebodies are located at
an elevation of =28 — —1933 m and have a maximum length of
1057 m along the strike and a maximum length of 1450 m
along the dip direction. The thickness of single-drilling-
controlled orebody is 0.64—75.07 m overall, 5.19-40.94 m in
general, and 7.16 m on average. The single-sample gold grade
is 1.00-66.30 g/t overall, 1.00—4.00 g/t in general, and 3.02
g/t on average.

The orebodies in the Dayin’gezhuang gold deposit have a
pitch direction of NNE, a pitch angle of approximately 55°, a
plunge direction of NEE 75° and a plunge angle of
approximately 22° overall (Fig. 0).

Liu et al. / China Geology 5 (2022) 696—721

The shallow (—800—0 m) ore bodies are mainly controlled
by tunnels and intensive drilling holes, while the deep (—2000 —
—800 m) orebodies are mainly controlled by drilling holes
(Fig. 6b). The basic engineering spacing to explore the
controlled resources is 120 m % 120 m (strike x dip direction).
In fact, the proven resources, controlled resources and
inferred resources have been explored in different ore blocks
individually, with drilling spacing used including (29-108) m x
(38-92) m, (68-129) m x (90—135) m, and (118-244) m x
(186 —292) m (strike x dip direction). The cumulative
resources of gold ores and gold of all ore blocks are 68x10° t
and 183 t, respectively, with an average orebody thickness of
9.84 m and an average gold grade of 2.69 g/t. Among them,
43x10° t of gold ores and 118 t of gold are obtained from
shallow orebodies, with an average orebody thickness of
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Fig. 6. a—Vertical projection diagram; b—horizontal projection diagram of the main orebodies in the Dayin’gezhuang gold deposit.
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10.25 m and an average gold grade of 2.75 g/t. Meanwhile,
25x10° t of gold ores and 65 t of gold are obtained from deep
orebodies, with an average orebody thickness of 6.15 m and
an average gold grade of 2.61 g/t. The gold resources ratio,
ore grade ratio, and orebody thickness ratio between deep and
shallow orebodies are 0.55, 0.95 and 0.60, respectively.
Therefore, the scale and enrichment degree of deep orebodies
are both smaller than those of shallow orebodies.es.es.es.

3.4. Ore characteristics

There are mainly three types of ores in the Dayin ’
gezhuang gold deposit, namely fine-grained disseminated
pyrite-sericite-quartz altered cataclastic rocks (Figs. 7a, b),
disseminated and veinlet-stockwork pyrite-sericite-quartz
altered granitic cataclastic rocks (Figs. 7c, d), and veinlet-
stockwork pyrite-sericite-quartz altered granites (Figs. 7e, ),
which are mainly distributed in the pyrite-sericite-quartz
altered cataclastic rocks zone, the pyrite-sericite-quartz altered

granitic cataclastic rocks zone, and the pyrite-sericite-quartz
altered granite zone on the footwall of the major fracture
plane respectively. Gold ores are composed of metallic
minerals and non-metallic mineral. The primary metal mineral
is pyrite, and the secondary ones are chalcopyrite, galena,
sphalerite and argentite, whereas non-metallic minerals are
dominated by quartz, sericite, K-feldspar and plagioclase,
with a small quantity of biotite and calcite (Table 1). Among
them, pyrite is the main gold-bearing mineral, followed by
quartz. The ore textures are dominated by granular texture,
followed by cataclastic, interstitial, etching, poikilitic, and
opaque textures. The ore structures are dominated by
disseminated and veinlet disseminated structures, followed by
spotted, stockwork, and staggered structures.

According to the whole-rock analysis results of seven ore
samples (Table 2), the SiO, content is high (66.20%—72.64%),
with an average of 68.66%. The Al,O; content is 12.24%—
14.41%, with an average of 13.72%. The ores also contain a
small amount of K,O (3.82%—5.62%, average 4.73%), Fe,05

Fig. 7. Main gold ore types in the Dayin’gezhuang gold deposit. a—b—disseminated and veinlet-stockwork pyrite-sericite-quartz alterated cata-
clastic rock type; c—d—veinlet-stockwork pyrite-sericite-quartz alterated granite cataclastic rock type; e-f—veinlet-stockwork K-feldspar and pyr-
ite-sericite-quartz alterated alteration granite type. Kf-K-feldspar; Py—pyrite; Qz—quartz; Ser—sericite.
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Table 1. Mineral composition of ores in the Dayin’gezhuang gold deposit.

Relative content Metallic minerals

Non-metallic minerals

Native metals Sulfides

Others

Primary Electrum, Native gold Pyrite

Secondary Native silver, kustelite
argentite

Small amounts Native bismuth

Chalcopyrite, galena, sphalerite,

Pyrrhotite, chalcocite, tetrahedrite,
marcasite, covellite, aikinite,

Quartz, sericite, K-feldspar, plagioclase
Siderite, limonite Biotite, calcite
Magnetite, specularite,
hessite

Chlorite, epidote, orthite, leucoxene,
zircon, sphene, apatite, rutile

galenobismutite, matildite, freibergite,
polybasite, antimonpearceite, joseite

Table 2. Major elements (%) composition of ores in the Dayin’

gezhuang gold deposit.
Sample 1Q82- IQ85- IQ85-  IQ90- 1Q90- IQ90- 1Q90-
No. 3001 3014 3015 503 507 513 517

Si0, 69.32 68.58 68.96 67.61 66.2 6734 72.64
TiO, 0.16 0.18 0.14 0.16 0.16 0.12 0.11
Fe,0; 1.61 3.12 1.42 1.66 3.87 3.01 2.56
FeO 222 1.22 1.60 1.36 3.90 435 2.90
CaO 3.25 2.11 3.39 3.66 0.30 0.60 0.30
MgO 0.18 0.64 0.52 0.65 1.36 0.81 0.92
P,05 0.05 0.06 0.08 0.05 0.05 0.04 0.03
MnO 0.08 0.08 0.15 0.24 0.82 0.14 0.37
K,0 5.13 5.62 5.40 4.66 4.22 4.28 3.82

Na,O 0.13 / / 0.09 0.12 0.12 0.08
AL)O, 13.71 14.12 13.84 1441 1394 1381 12.24
CO, 2.45 / / 3.08 233 2.57 1.22
H0" 1.82 / / 222 2.83 2.47 2.07
LOI / 4.40 4.66 / / / /

Total 100.11  100.13  100.16  99.85 100.10 99.66  99.26

Table 3. Trace elements composition of ores in the Dayin’
gezhuang gold deposit.
Elements Au Ag S Cu Pb Zn As

Minimum 1.00 0.01 0.08 0.01 0.01 0.01 0.01
Maximum  91.50 15354 827 0.68 391 293  0.06
Average 2.58 11.10 129 005 0.08 0.07 0.02

Note: 107 for Au and Ag; % for S, Cu, Pb, Zn, and As.

(1.42%—-3.87%, average 2.46%), FeO (1.22%-4.35%, average
2.51%), CaO (0.30%-3.66%, average 1.94%), MgO (0.18%—
1.36%, average 0.73%). The contents of TiO,, P,Os, MnO
and Na,O are very low.

The primary useful element in the ores is Au, and the
associated beneficial elements include Ag, S, Cu, Pb, and Zn,
and the hazardous element is As. According to the whole-rock
analysis results of 516 ore samples (Table 3), the Au grade
ranges from 1.00g/t to 91.50 g/t, with an average of 2.58 g/t.
The Ag grade ranges from 0.01 g/t to 153.54 g/t, with an
average of 11.10 g/t, which can be used as an associated
beneficial component for comprehensive recycling. The
contents of other elements such as S, Cu, Pb and Zn are less,
not up to the standard of comprehensive utilization. The
content of hazardous element As is very low, with an average
of 0.02% (0.01%—-0.06%).

3.5. Characteristics of gold minerals

The gold minerals in the Dayin ’gezhuang gold deposit

mainly include electrum (Figs. 8e, f; 68.2%), followed by
native gold (31.7%). The fineness of electrum and native gold
is 563 =799 (average: 722) and 811 -917 (average: 881),
respectively. The gold minerals mainly include fine grains
(0.037 -0.01 mm; 39.36%) and micrograins (<0.01 mm;
38.67%) in terms of grain size and are mainly granular
(72.32%) in shape. Based on their occurrence states, the gold
minerals mainly include the intergranular type (Figs. 8a, c;
60.18%), followed by the fissure type (20.37%) and the
inclusion type (Figs. 8b, d; 19.45%).

3.6. Ore-forming stages

The Dayin ’gezhuang gold deposit has four ore-forming
stages according to mineral assemblages, textures, structures,
and the crosscutting relationships of hydrothermal veins (Fig.
9; Yang LQ et al., 2009; Chai P et al., 2019a, 2019b). Stage I
is the pyrite-quartz stage. The hydrothermal veins of this stage
are white and primarily consisted of quartz and a small
number of pyrites and sericites. Stage II is the gold-quartz-
pyrite stage. The mineralized veins of this stage are grayish-
yellow and distributed as veinlets in fractured zones. They
mainly consist of pyrites and a small amount of quartz,
sericites, native gold, and electrum. Stage III is the gold-
quartz-polymetallic sulfide stage. The mineralized veins of
this stage are grayish-yellow and are distributed as veinlets
and micro-veins in fractured zones. They mainly consist of
quartz, pyrites, chalcopyrite, galena, and sphalerite and a
small amount of electrum, kustelite, pyrrhotite, tetrahedrite,
galenobismuthite, and native bismuth. Stage IV is the quartz-
carbonate stage. The hydrothermal veins of this stage are
distributed as veins and veinlets in fractured zones. They
mainly consist of calcites and a small amount of quartz.

The mineralization intensity evolved from weak to strong
and then weak from early to late ore-forming stages. The
mineral assemblages evolved from simple to complex and
then simple. They transitioned from only pyrites to the
coexisting of galena, sphalerite, pyrites, and finally carbonate
veins. Gold was mainly precipitated in ore-forming stages II
and III.

4. Ore deposit geochemistry
4.1. Fluid inclusions

The fluid inclusions in the Dayin’gezhuang gold deposit
generally have a small diameter of 2-15 um and various
morphologies, such as the oval, strip, and negative crystal.
They mainly have three types, i.e., H,O-CO,, H,O solution,
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100 m

100 m

Fig. 8. Photomicrographs (a—d) and backscattered electron images (e, f) of typical gold ores in the Dayin’gezhuang gold deposit. Ccp—chal-

copyrite; Ele—electrum; Gal-galena; Gl-native gold; Py—pyrite, Qz—quartz.

and pure CO, (Fig. 10). The H,0-CO, inclusions are the most
important and are three-phase (Ly;,0+Lco,TVco,) OF two-phase
(LiotLco,/Veo,) at room temperature (25°C). They can be
subdivided into H,O-rich (LcotV0,<50%) and CO,-rich
(Lo, tVc0,>50%) subtypes according to the proportion of the
volume of the CO, phases (L¢o,=Vco,) in the total inclusion
volume. The H,O solution inclusions are two-phase
(Li,0TVu,0) at room temperature, and their gas-liquid ratio is
generally 10%—60%, with a maximum of up to 90%. The pure
CO, inclusions are two-phase or single-phase (Lco,=V¢o,) at
room temperature.

The vapor-phase components of H,0-CO, inclusions
mainly include CO, and a small amount of CH,, C,Hg, H,S,
SO,, N,, and CO, and their liquid-phase components mainly

include H,O (Shen K et al., 2000; Liu Y et al., 2014; Chai P et
al., 2019a, 2019b). The pure CO, inclusions mainly include
CO, and a small amount of CH, (Chai P et al., 2019a, 2019b).
The H,O solution inclusions are mainly composed of H,O
(Chai P et al., 2019a, 2019D).

The commonly visible inclusions formed at ore-forming
stage 1 include H,0-CO, and pure CO, inclusion
assemblages. The T, ranges between —58.4°C and
—56.6°C, which is slightly lower than the triple point
temperature of pure CO, (—56.6°C), indicating that the CO,
phase in the H,0-CO, inclusions may contain a trace amount
of CH, or other vapor-phase components. The 7T, .., range
between 5.3°C and 7.8°C, and T, ¢, range is 12.1-30.9°C,
and Tj.tor range is 305 -388°C. The salinity ranges from
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Stage

Mineral

Pyrite
Quartz
Native gold
Sericite
Electrum
Pyrrhotite
Kustelite
Tetrahedrite
Sphalerite
Galenobismutite
Chalcopyrite
Galena
Native bismuth

Calcite

Fig. 9. Paragenetic sequence of main minerals in the Dayin’gezhuang gold deposit (modified from Yang LQ et al., 2009; Chai P et al., 2019a,

2019b).

Fig. 10. Photomicrographs of typical fluid inclusions in the Dayin’gezhuang gold deposit. a— aqueous type (H,O-NaCl) inclusions and pure
carbonic type (CO,) inclusions; b—aqueous type (H,O-NaCl) inclusions and aqueous-carbonic type (CO,-H,0O-NaCl) inclusions; c—aqueous
type (H,0O-NaCl) inclusions; d—aqueous-carbonic type (CO,-H,0-NaCl) inclusions; e—aqueous type (H,O-NaCl) inclusions; f-aqueous-carbon-

ic type (CO,-H,0-NaCl) inclusions.

4.28% NaCl eqv to 8.51% NaCl eqv (Table 4; Fig. 11).

The inclusions formed at ore-forming stage II include the
coexisting of H,0-CO,, pure CO,, and H,O solution
inclusions. The T,c, ranges from —58.1 to —56.6°C,
suggesting the CO, phase in the H,O—CO, inclusions may
contain a trace amount of CH, or other vapor-phase
components. The T .., 1s between 6.0 and 8.7°C. The T o,
ranges between 24.3 and 29.8°C. The T} .tor is 235-317°C.
The salinity ranges between 2.62% and 7.40% NaCl eqv. The

H,O solution inclusions have a Ty, ;. of =7.6 ——0.9°C, a T} 1o
of 235 -317°C, and salinity of 1.56% —11.12% NaCl eqv
(Table 4; Fig. 11).

Similar to stage II, the inclusions formed at ore-forming
stage III also include the coexisting of H,O0—CO,, pure CO,,
and H,O solution inclusions, except that the proportion of the
H,O solution inclusions increases significantly. The T, o,
ranges from —58.6°C to —56.6°C, suggesting that the CO,
phase still contains a trace amount of CH, or other vapor-
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Table 4. Summary of the microthermometric data for fluid inclusions trapped in quartz and calcite from four mineralization stages.

Stage Fluid inclusion Ty c0,/°C Tin-cla/°C Th.co,/°C Tineice!°C Th-tor/°C Salinity/% References
type NaCl eqv

I H,0-CO,-NaCl —58.3—57.1 5.3-7.8 12.1-30.9 305-388 4.28-8.51 Chai P et al.,

II H,0-CO,-NaCl —58.1--56.6  6.0-8.7 24.3-29.8 235-317 2.62-7.40 2019a
H,0-NaCl =7.6—--0.9 219-301 1.56-11.12

il H,0-CO,-NaCl —58.6——56.6 5.9-8.4 21.0-29.8 236-319 3.19-5.09
H,0- NaCl -94--1.6 195-290 2.73-13.33

v H,0- NaCl —-4.2--1.1 126-233 0.48-6.72

Note: T,.cox, melting temperature of solid CO, phase; T, .., clathrate melting temperature; 7,_cq,, homogenization temperature of CO, phase; Ty ice
temperature of final ice melting; T}, ror, final homogenization temperature; % NaCl eqv, weight percent NaCl equivalent.
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Fig. 11. Histograms of total homogenization temperatures (7}, ror) and salinities of fluid inclusions in different stages.

phase components. The T, .. ranges between 5.9°C and
8.4°C. The T, o, ranges from 21.0°C to 29.8°C. The Tj tor
mainly ranges between 236°C and 319°C. The salinity ranges
from 3.19% to 7.51% NaCl eqv. For H,O solution inclusions,
the T ranges between —9.4°C and —1.6°C. The T o
ranges from 195°C to 287°C. The salinity ranges from 2.73%
to 13.33% NaCl eqv (Table 4; Fig. 11).

The inclusions formed at ore-forming stage IV mainly
include H,O solution inclusions, which have a T}, ;.. of —4.2 —
—1.1°C, a Ty.tor of 126 —233°C primarily, and salinity of
0.48%—6.72% NaCl eqv (Table 4; Fig. 11).

4.2. H and O isotopes

The 6Dgnow-quart, Values range from —99.71%o to —68.38%o
(average: —77.16 %o; n=26) and 51803Mow_quam values range
from 7.34 %o to 12.66 %o (average: 10.38 %o; n=26). The
0Dsmow-quarez and 51805M0w-quam values of different ore-
forming stages are slightly different (Table 5). The hydrother-
mal quartz of ore-forming stage I has dDgyow-quar; Values of
—84.41 %0 — —68.38 %o (average: —75.71 %o; n=7) and
8" OgMow.-quart, Values of 7.34%0—12.66%. (average: 10.55%o;
n=7). The hydrothermal quartz of ore-forming stage II has
0Dsmow-quarz Values of —79.20 %o — —69.83 %o (average:
~73.74%o; n=7) and 6'* Ogyow-quartz values of 7.34%o—11.81%o
(average: 10.47 %o; n=7). The hydrothermal quartz of ore-
forming stage Il has dDgyow-quarz Values of —81.38 %o —
—70.40%o (average: —76.07%o; n=0) and 51805Mow_quam values
of 7.34%0—11.81%0 (average: 10.13%o; n=06). The hydrothermal
quartz of ore-forming stage IV has the dDgyow-quart, Values of

—99.71 %0 — —78.71 %o (average: —83.93 %o; n=6) and
5" Ospmow-quart Values of 7.34%o —11.81%. (average: 10.31%o;
n=6).

The hydrogen isotope value of hydrothermal quartz
(6Dgmow-quartz) TePresents the hydrogen isotope value of fluid
(0Dgmow-water)» DUt the oxygen isotope value of fluid
(6" 0gmow-water) Should be calculated based on the oxygen
isotope values of hydrothermal quartz (51805M0W_quam) and
the corresponding metallogenic temperatures of different ore-
forming stages. The calculation equations (Clayton RN et al.,
1972) are as follows:

10’10t guarty-water=3-38 % 10°72=3.40;

lnaquaﬂz—water:( 1 000+51 SOSMOW-quartz)/ ( 1 000+51 ’
OSMOW-water) .

In general, the total homogenization temperature of fluid
inclusions represents the lower limit of the trapping
temperature. However, significant fluid immiscibility
occurred in ore-forming stages II and III of the Dayin’
gezhuang gold deposit. Therefore, the total homogenization
temperature of fluid inclusions can approximately represent
the metallogenic temperature (Hagemann SG and Liders V,
2003). Based on the microthermometry of the
abovementioned  fluid inclusions, the metallogenic
temperatures of the Dayin 'gezhuang gold deposit at ore-
forming stages [-IV were 340°C, 280°C, 250°C, and 200°C,
respectively.

As indicated by the calculation results (Table 5), the ore-
forming fluids in the Dayin ’gezhuang gold deposit have
ODgvoW-water Values of —99.71 %0 — —68.38 %o (average:
~77.16%0; n=26) and 0" * Ogpow water Values of —4.36%0—7.07%o
(average: 2.05 %o; n=26). The ore-forming fluids of ore-
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Table S. Hydrogen and oxygen isotope compositions from four ore-forming stages in the Dayin’gezhuang gold deposit.

Sample Lithology Stage Mineral ODsyow/%o 0" 0gmow/%o  0'%0p0/%0  References
Dygz4 Ore / Sericite —64 9.3 6.98 Mao JW et al., 2005
Dygz5 Ore / Sericite —58 9.5 7.18
Dygz7 Ore / Sericite —52 8.8 6.48
Dygz8 Ore / Sericite —58 9.2 6.88
Dygz9 Ore / Sericite -60 9.3 6.98
Y62-210B Quartz-pyrite vein I Quartz —84.41 12.66 7.07 Wei YJ etal., 2020
Y62-290C-1 Quartz vein I Quartz =70.25 11.81 6.22
Y75-247-5A-1 Silicified and K-feldspar altered | Quartz —72.83 10.78 5.19
cataclastic rock-type ore
Y61-210-4B-1 Silicified and K-feldspar altered 1 Quartz —83.25 9.59 4.00
cataclastic granite
Y75-247-6A-1 Pyritization and K-feldspar I Quartz —68.38 7.34 1.75
altered granite
/ Quartz vein I Quartz —78.00 10.90 5.31 Zhang LG et al., 1994
0911 Quartz-pyrite vein I Quartz —72.83 10.78 5.19 Dai XL, 2012
Y62-290C-2 Quartz vein II Quartz —=70.43 11.81 4.16 Wei YJ et al., 2020
Y75-247-5A-2 Silicified and K-feldspar altered 11 Quartz =70.04 10.78 3.13
cataclastic rock-type ore
Y61-210-4B-2 Silicified and K-feldspar altered 11 Quartz —78.56 9.59 1.94
cataclastic granite
Y75-247-6A-2 Pyritization and K-feldspar II Quartz =70.15 7.34 -0.31
altered granite
/ Quartz-base metals vein I Quartz -78.00 11.30 3.65 Zhang LG et al., 1994
Y309Cc-2 Quartz-pyrite vein II Quartz —69.83 11.59 3.94 Wei YJ et al., 2020
0919 Silicified and K-feldspar altered 1l Quartz —79.20 10.91 3.26 Dai XL, 2012
cataclastic rock
Y62-290C-3 Quartz vein il Quartz —74.58 11.81 2.86 ®
Y75-247-5A-3 Silicified and K-feldspar altered 11 Quartz —78.71 10.78 1.83 Wei YJ et al., 2020
cataclastic rock type ore
Y61-210-4B-3 Silicified and K-feldspar altered 111 Quartz —81.38 9.59 0.64
cataclastic granite
Y75-247-6A-3 Pyritization and K-feldspar I Quartz -79.29 7.34 -1.61
altered granite
Y309Cc-3 Quartz-pyrite vein I Quartz —72.04 11.59 2.64
0928 Pyrite-sericite-quartz alteration 11 Quartz —70.40 9.67 0.72 Dai XL, 2012
cataclastic rock
Y62-290C-4 Quartz vein \Y Quartz —-78.81 11.81 0.11 ®
Y75-247-5A-4 Silicified and K-feldspar altered [V Quartz —81.26 10.78 -0.92
cataclastic rock-type ore
Y61-210-4B-4 Silicified and K-feldspar altered IV Quartz —82.42 9.59 -2.11
cataclastic granite
Y75-247-6A-4 Pyritization and K-feldspar v Quartz -99.71 7.34 —4.36
altered granite
Y309Cc-4 Quartz-pyrite vein Y Quartz —82.69 11.59 -0.11
0936 Quartz-carbonate vein Y Quartz =78.71 10.75 —-0.95 Dai XL, 2012

Note: @ China University of Geosciences (Beijing), 2005. Study on the overlapping of multiple structural systems and mineralization network of the Dayin’

gezhuang gold deposit, Zhaoyuan city, Shandong Province.

forming stage 1 have dDgyiow.water Values of —84.41 %o —
—68.38%o (average: —75.71%o; n=7) and 0"* Ogpow-water Values
of 1.75%0—7.07 %o (average: 4.96 %o; n=7). The ore-forming
fluids of ore-forming stage II have dDgyow.waer Values of
=79.20 %0 — —69.83 %o (average: —73.74 %o; n=7) and
3"0sMow.water Values of —0.31%o—4.16%o (average: 2.83 %o;
n=T). The ore-forming fluids of ore-forming stage III have
ODgMoW-water  Values of —81.38 %0 — —70.40 %o (average:
~76.07%0; n=6) and 53 Ogyiow-water Values of —1.61%0—2.86%o
(average: 1.18%o; n=6). The ore-forming fluids of ore-forming
stage IV have dDgyow.water Values of —99.71 %o — —78.71 %o

(average: —83.93 %o; n=6) and 5'*Ogyow.waer Values of
—4.36%0—0.11%o (average: —1.39%o; n=0).

The hydrothermal sericites of ore-forming stages II and III
in the Dayin ’gezhuang gold deposit have J0Dgyow-sericite
values of —64%o0 — —52%0 (Table 2; average: —58%o; n=5) and
0" 0 ow-sericite Values of 8.8%0—9.5%o (average: 9.2%o; n=>5).
The hydrogen isotope value of hydrothermal sericites
(0Dgmow-sericite)  Tepresents the hydrogen isotope value of
fluids (0Dgmow-water)- But the oxygen isotope value of fluids
(6" O0spow-water) Should be calculated according to the oxygen
isotope values of hydrothermal sericites (6'*Ogyow-sericite) and
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the corresponding metallogenic temperatures at different ore- B0gmow.water Values of ore-forming stages II and III are
forming stages. The calculation equations (Zheng YF and —64 %0 — —52 %o (average: —58 %o; n=5) and 6.48 %0—7.18 %o
Chen JF, 2000) are as follows: (average: 6.90%o; n=5), respectively.
10°InGlppengite-water=4-13%10%/ T°~7.41x10%/ T+2.20;
1naphengite-water:(l000+5180SMOW-phengite)/ 43.8 iSOfOPES
(1000463 Ogpow-water) (0-1200°C).
According to the calculation results, the Dgpow-water a01d The Dayin ’gezhuang gold deposit has 3**Scpr values

Table 6. Sulfur isotope compositions from four ore-forming stages in the Dayingezhuang gold deposit.

Sample Lithology Stage Mineral 54 References

Dygz3 Ore / Pyrite 7.60 Mao JW et al., 2005
Dygz4 Ore / Pyrite 7.90

Dygz7 Ore / Pyrite 7.50

Dygz8 Ore / Pyrite 7.50

Dygz9 Ore / Pyrite 7.20

Dygz6 Ore / Pyrite 7.80

Dygz10 Ore / Pyrite 6.80

1S81-3001 Coarse veined ore I Pyrite 7.20 ®

1S82-3003 Coarse veined ore I Pyrite 7.28

Y61-210-1A Sericite-quartz altered rock I Pyrite 7.18 Zhang RZ et al., 2016
Y61-210-1B Sericite-quartz altered rock I Pyrite 7.21

Y61-210-5B Silicified and K-feldspar altered granite I Pyrite 7.48

Y75-247-1A Pyrite-sericite-quartz altered rock I Pyrite 7.41

Y75-247-2A Quartz-base metals vein I Pyrite 7.54

Y61-210-2B Pyrite-sericite-quartz altered rock I Pyrite 7.28

Y62-210A Quartz-pyrite vein I Pyrite 7.22

Y62-210B Quartz-pyrite vein I Pyrite 7.26

0911 Quartz-pyrite vein I Pyrite 7.32 Dai XL, 2012
DYG33-1 Disseminated and stockwork ore 1 Pyrite 9.0 Yuan ZZ et al., 2019
DYG33-2 Disseminated and stockwork ore I Pyrite 8.3

DYG-52 Disseminated and stockwork ore I Pyrite 5.8

DYG36-1 Disseminated and stockwork ore I Pyrite 7.1

DYG36-2 Disseminated and stockwork ore I Pyrite 7.6

DYGI11-1 Disseminated and stockwork ore I Pyrite 8.0

DYGI11-2 Disseminated and stockwork ore I Pyrite 8.2

DYGI11-3 Disseminated and stockwork ore I Pyrite 7.1

DYG23-1 Disseminated and stockwork ore I Pyrite 7.5

DYG23-2 Disseminated and stockwork ore I Pyrite 7.8

1Da90-502 Ore il Pyrite 5.50 @®

1S81-3002 Fine-grained vein ores I Pyrite 5.90

1S82-3001 Fine-grained vein ores I Pyrite 7.40

1S82-3002 Fine-grained vein ores I Pyrite 6.75

Y61-210-4B Silicified and K-feldspar altered cataclastic granite I Pyrite 6.78 Zhang RZ et al., 2016
Y61-290-1 Pyrite-sericite-quartz altered rock I Pyrite 6.92

Y75-247-5A Silicified and K-feldspar altered cataclastic rock type ore 1l Pyrite 7.11

Y75-247-6A Pyritization and K-feldspar altered granite I Pyrite 6.84

0919 Pyritization and silicified altered cataclastic rock I Pyrite 5.61 Dai XL., 2012
DYG32-1 Disseminated and stockwork ore 11 Pyrite 53 Yuan ZZ et al., 2019
DYG32-2 Disseminated and stockwork ore I Pyrite 7.1

DYG38-1 Disseminated and stockwork ore I Pyrite 7.7

DYG38-2 Disseminated and stockwork ore I Pyrite 7.4

DYG43-1 Disseminated and stockwork ore I Pyrite 6.5

DYG43-2 Disseminated and stockwork ore I Pyrite 5.4

DYG44 Disseminated and stockwork ore I Pyrite 4.8

DYG7-1 Disseminated and stockwork ore I Pyrite 5.2

DYG7-2 Disseminated and stockwork ore I Pyrite 8.0

DYG8-1 Disseminated and stockwork ore I Pyrite 8.0

DYG3-2 Disseminated and stockwork ore I Pyrite 7.8
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Table 6. (Continued)

Sample Lithology Stage Mineral 54 References
1S82-3004 Coarse veined ore il Sphalerite 7.29 ©

1S82-3005 Sericite-quartz altered rock il Chalcopyrite- Pyrite 6.75

Y62-290C Quartz vein il Pyrite 6.57 Zhang RZ et al., 2016
Y61-290-4 Quartz-base metals vein il Pyrite 6.82

Y79-356K Quartz-base metals vein il Sphalerite 6.86

Y79-356K Quartz-base metals vein 11T Galena 4.99

0928 Disseminated and stockwork ore il Pyrite 591 Dai XL, 2012
DYG39-1 Disseminated and stockwork ore I Pyrite 6.9 Yuan ZZ et al., 2019
DYG39-2 Disseminated and stockwork ore il Pyrite 6.4

DYG57 Disseminated and stockwork ore il Pyrite 6.2

DYG59 Disseminated and stockwork ore il Pyrite 7.6

DYG22-1 Disseminated and stockwork ore il Pyrite 6.4

DYG22-2 Disseminated and stockwork ore il Pyrite 7.2

DYG22-3 Disseminated and stockwork ore il Pyrite 6.7

Y55-210Ka Silver-polymetallic sulphide ore IV Galena 4.61 Zhang RZ et al., 2016
Y55-210Kb Silver-polymetallic sulphide ore IV Galena 4.58

Y309-Ce Quartz-carbonate vein IV Pyrite 6.98

0936 Quartz-carbonate vein IV Pyrite 6.73 Dai XL, 2012

Note: (D Shandong Provincial No.6 Exploration Institute of Geology and Mineral Resources, 1992. Intermediate geological report on the exploration of

Taishang gold deposit in Zhaoyuan City, Shandong Province.

(Table 6) of 4.6 %0—9.0 %0, with a range of 4.4 %o and an
average of 6.9%o (n=66). Specifically, the 6>*Scpr values of
ore-forming stage I are 5.8 %0—9.0%o, with a range of 3.2 %o
and an average of 7.5%o (n=21); those of ore-forming stage 11
are 4.8 %0—8.0 %0, with a range of 3.2 %o and an average of
6.6%o (n=20), those of ore-forming stage III are 5.0%0—7.6%o,
with a range of 2.6 %o and an average of 6.6 %o (n=14), and
those of the ore-forming stage IV are 4.6 %o0—7.0 %o, with a
range of 2.4%o and an average of 5.7%o (n=4).

4.4. Pb isotopes

The Pb isotopes of the Dayin’gezhuang gold deposit vary
in a small range and have a relatively stable composition
(Table 7). The 2°Pb/2**Pb values are 17.1100—17.3585, with
an average of 17.2731 (n=42), the **’Pb/***Pb values are
15.4000-15.6116, with an average of 15.4815 (n=42), and the
208pp/29%4ph values are 37.6000—38.3328, with an average of
37.9180 (n=42).

5. Discussion

5.1. Spatial coupling relationships between ore-controlling
fault and orebodies

To analyze the deep occurrence characteristics of the ore-
controlling Zhaoping Fault and the spatial coupling
relationship between the fault and orebodies in detail, a three-
dimensional geological model of the Dayin ’gezhuang gold
deposit at an elevation of —2000—0 m was established based
on drilling holes data and the data on exploration lines. Then,
the fault slope is plotted using the information about the major
fracture plane of the Zhaoping Fault extracted from the model
(Fig. 12; Xie TC et al., 2022). As shown in the diagram, the

dip angle of the fault is high in the shallow and gradually
decreases towards the deep at an elevation of —2000—-0 m.
Moreover, the fault surface undulates significantly and
presents a shovel-shaped stepped pattern overall. This plot
also shows that there are three NNE-trending zones with a
high dip angle (in red), between and besides which are zones
with a low dip angle (in yellow and green), indicating that the
fault dip angle presents three sections of stepped high-to-low
transitions. The stepped characteristic of this fault is similar to
that of the Sanshandao and Jiaojia faults, indicating that these
three major ore-controlling faults (Sanshandao, Jiaojia, and
Zhaoping faults) in the Jiaodong Peninsula have consistent
morphological characteristics (Song MC et al., 2012, 2021b).
Therefore, they should belong to the same fault system
formed under a unified dynamic setting and are detachment
faults developing between Precambrian metamorphic rocks
and Jurassic granites (Song MC et al., 2022a).

To analyze the occurrence characteristics of the gold
orebodies, the gold orebodies damaged by the Dayin ’
gezhuang and Houcang faults are restored and the thickness x
grade distribution map of major orebodies is plotted. As
shown in the map, there are multiple mineralization
enrichment areas with high thickness x grade values. These
mineralization enrichment areas are distributed in a beaded
pattern along the dip directions of the orebodies, roughly
forming two near-parallel bead zones in the south and the
north each. The general distribution direction of the bead
zones indicates that the orebodies have a plunge direction of
75°. The mineralization enrichment areas are present as NNE-
trending zones and show an alternating distribution with
weakly mineralized zones (Fig. 13).

The map showing the main orebodies distribution and
mineralization enrichment areas and the diagram presenting
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Table 7. Lead isotopic compositions of the Dayin’gezhuang gold deposit.

Sample Mineral 206pp,204py 207pp/204pp 208pp,204py References
1Da90-505 Galena 17.2950 15.5130 38.0130 ®
147 Pyrite 17.1100 15.4400 37.6700 Xu B, 1999
177 Pyrite 17.1600 15.4000 37.6000

Y55-210K Galena 17.2638 15.4663 37.8580 Zhang L etal., 2014
Y61-210-1B Pyrite 17.3102 15.5010 37.9775

Y61-210-2B Pyrite 17.2914 15.4901 37.9704

Y61-210-3B Pyrite 17.3153 15.5023 37.9818

Y61-290-1 Pyrite 17.2669 15.5176 38.0333

Y61-290-4 Pyrite 17.3585 15.6116 38.3328

Y62-210A Pyrite 17.3187 15.5412 38.1201

Y62-210B Pyrite 17.2840 15.4946 37.9539

Y62-290C Pyrite 17.2853 15.5053 37.9899

Y75-247-1A Pyrite 17.2301 15.4773 37.8900

Y75-247-4A Pyrite 17.3286 15.5084 38.0004

Y75-247-5A Pyrite 17.2756 15.4965 379157

Y75-247-6A Pyrite 17.2949 15.4819 37.9441

Y79-356K Sphalerite 17.2359 15.4860 37.9198

Y79-356K Galena 17.2157 15.4595 37.8306

DYG33-1 Pyrite 17.336 15.504 37.9840 Yuan ZZ et al., 2019
DYG33-2 Pyrite 17.182 15.414 37.7290

DYG36-1 Pyrite 17.326 15.481 37.9480

DYG36-2 Pyrite 17.330 15.486 37.9700

DYGI1-1 Pyrite 17.234 15.468 37.8740

DYGI11-2 Pyrite 17.241 15.472 37.9530

DYG23 Pyrite 17.241 15.473 37.8840

DYG32 Pyrite 17.299 15.464 37.9000

DYG38-1 Pyrite 17.249 15.43 37.8660

DYG38-2 Pyrite 17.308 15.486 37.9400

DYG43-1 Pyrite 17.289 15.465 37.9050

DYG43-2 Pyrite 17.317 15.486 37.9630

DYG44 Pyrite 17.308 15.479 37.9150

DYG45 Pyrite 17.335 15.492 37.9680

DYG7-1 Pyrite 17.256 15.469 37.8850

DYG7-2 Pyrite 17.251 15.467 37.8730

DYGS-1 Pyrite 17.292 15.476 37.9180

DYGS-2 Pyrite 17.328 15.493 37.9680

DYG39-1 Pyrite 17.339 15.489 37.9710

DYG57-1 Pyrite 17.279 15.485 37.7470

DYG59-1 Pyrite 17.278 15.484 37.8310

DYG22-1 Pyrite 17.207 15.459 37.8670

DYG22-2 Pyrite 17.226 15.476 37.8870

DYG22-3 Pyrite 17.181 15.431 37.8100

Note: (D China University of Geosciences (Beijing), 2005. Study on the overlapping of multiple structural systems and mineralization network of the Dayin’

gezhuang gold deposit, Zhaoyuan city, Shandong Province.

the slope of the major fracture plane of the Zhaoping Fault are
superimposed together, showing that the locations of
mineralization enrichment areas are basically consistent with
the steep-to-gentle transition parts of the fault surface’s slope
and mainly occur at positions with a gentle fault dip angle
(Fig. 12). This result indicates that the gold mineralization
enrichment areas are mainly distributed in the transition parts
of the fault dip angle and relatively gentle steps, forming a
stepped pattern from shallow to deep.

The above-mentioned pitch and plunge regularity and
stepped pattern of orebodies are widely distributed in the

Jiaodong area (Song MC et al., 2012, 2020b, 2022b; Li SY et
al., 2022). The formation of the stepped pattern is related to
the change in fluid pressure affected by the change in the fault
dip angle. When fluids flew through the steep-to-gentle
transition sections of a fault and migrated toward gently
dipping sections, the pressure suddenly decreased, and the
fluids began to flow in a nearly horizontal direction at a low
flow velocity. All these created favorable conditions for fluid
unloading and gold precipitation. The fault transitions along
its strike and dip direction jointly control the pitch and plunge
direction of gold orebodies (Song MC et al., 2022a). The
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Fig. 12. Diagram showing the relationships between the fault dip
angle and the mineralization enrichment areas of main orebodies
along with the fault dip direction in the Dayin’gezhuang gold depos-
it (modified from Xie TC et al., 2022).
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Fig. 13. Three-dimensional distribution maps of the thickness x
gold grade of main orebodies in the Dayin’gezhuang gold deposit
(modified from Xie TC et al., 2022).

stepped pattern and the pitch and plunge regularities of
orebodies play an important role in deep orebodies
prospecting. These occurrence patterns of gold orebodies have
been applied to the deep orebodies prospecting of the Dayin’
gezhuang gold deposit and the Sanshandao, Jiaojia, and
Taishang-Shuiwangzhuang supergiant gold deposits.

5.2. Metallogenic epoch

The metallogenic age of the Jiaodong gold deposits has
been determined to be 120+2 Ma (Deng J et al., 2020c; Zhang
L et al., 2020). According to the testing results (Table 8) of
the isotopic age of hydrothermal minerals in the Dayin’
gezhuang gold deposit, the K-feldspars and sericites/muscovites
have “°Ar/*°Ar ages of 118+1 Ma and (119.1+1.2)—(133.37+
0.56) Ma, respectively. Different researchers provided
different explanations for the metallogenic time of the gold
deposit based on these results. Yang LQ et al. (2014a)

believed that metallogenic events in the Dayin’gezhuang gold
deposit occurred at 134 —126 Ma. Yuan ZZ et al. (2019)
determined the **Ar-**Ar age of sericites to be 119.1+1.2 Ma
and the zircon U-Pb age of mafic dikes before metallogenic
events to be 122.7£2.6 Ma. Therefore, they considered that
the Dayin’gezhuang gold deposit had a metallogenic age of
119.1£1.2 Ma. Charles N et al (2013) determined the
“OAr/°Ar plateau age of muscovites in Linglong granites on
the footwall of the Zhaoping fault to be 133.98+1.47 Ma.
They believed that this age resulted from the early ductile
deformation of the Linglong detachment fault (the southern
segment of the Zhaoping fault) and that the ductile and brittle
deformation of the Linglong detachment fault lasted from 143
Ma to 128 Ma. Based on the above studies, the authors
consider that the age of (133.37+0.56)—(126.84+0.59) Ma of
the Dayin’gezhuang gold deposit may reflect the activity age
of the detachment fault rather than the metallogenic age of the
deposit. Given that the metallogenic characteristics of the
Dayin ’gezhuang gold deposit are consistent with those of
other gold deposits controlled by the Zhaoping, Jiaojia, and
Sanshandao fault zones, these gold deposits should have the
same metallogenic age. Therefore, the authors of this paper
consider that the isotopic age of 118—-119.1 Ma mentioned
above reflects the metallogenic age of the Dayin ’gezhuang
gold deposit.

5.3. Properties and sources of ore-forming fluids

The ore-forming fluids in the Dayin ’gezhuang gold
deposit are generally of H,O-CO,-NaCl type with medium-
low temperature and medium-low salinity (Yang LQ et al.,
2009; Shen K et al., 2000; Chai P et al., 2019a, 2019b). From
the early ore-forming stage (I) to the late ore-forming stage
(IV), the fluid inclusion types changed from simple to
complex and then simple, and the fluids experienced a gradual
evolution from high to medium and then low temperature.
The salinity ranges of the main ore-forming stages (II and III)
are significantly wider than those of the early and late ore-
forming stages (I and IV). The H,0-CO, and H,O solution
inclusions were simultaneously trapped in the same fluid
inclusion assemblages at the main ore-forming stages (Fig. 10a,
b). However, the two types of inclusions have similar final
total homogenization temperatures but different salinity
values (H,O solution inclusions have high salinity and H,O-
CO, inclusions have low salinity; Fig. 14), indicating that
significant fluid immiscibility occurred at the main ore-
forming stages (Ramboz C et al., 1982; Roedder E, 1984),

Table 8. Metallogenic age of the Dayin’gezhuang gold deposit.

Sample Lithology Mineral Method Age/Ma References
DYGZ-210-3 Pyritization quartz-K-feldspar agglomerates K-feldspar ~ ““Ar-¥Ar  118+1 LulJ,2012
Y745380KI Pyrite-sericite-quartz alteration cataclastic rock Sericite OAr-Ar 130.52+0.52 Yang LQ et al., 2014a
Y745380KII Pyrite-sericite-quartz alteration cataclastic rock Muscovite OAr-¥Ar 128.67+0.50

Y725245K Pyrite-sericite-quartz alteration cataclastic rock Sericite OAr-¥Ar 133.37+0.56

Y61250K Pyrite-sericite-quartz alteration cataclastic rock Sericite OAr-PAr 126.80+0.59

DYG-36 Pyrite-sericite-quartz alteration cataclastic rock Sericite OAr-PAr 119.1+1.2 Yuan ZZ et al., 2019
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resulting in contents of volatile constituents such as CO, and
H,S in fluids reduced and the gold-bearing complexes
decomposed, which led to gold precipitation and
mineralization (Bowers TS and Helgeson HC, 1983; Phillips
GN and Evans KA, 2004; Chi GX and Xue CJ, 2011; Chai P
et al., 2019a).

Many studies have been conducted on the characteristics
of ore-forming fluids in the Jiaodong gold deposits, but the
sources of ore-forming fluids in these deposits are still
controversial. Many researchers believe that the ore-forming
fluids were dominated by magmatic water at the main ore-
forming stages and were then mixed with meteoric water in
the late ore-forming stage (Deng J et al., 2015; Li L et al.,
2015; Wen BJ et al., 2016; Liu JC et al., 2017; Cai YC et al.,
2018). Some researchers believe that metamorphic water may
be the main source of ore-forming fluids in the Jiaodong gold
deposits and may be mixed with magmatic water and meteoric
water (Yang LQ et al., 2014b, 2016, 2017). Some researchers
denied the influence of meteoric water on gold mineralization
in the Jiaodong area and believed that the H-O isotopic
characteristics are the result of the influence of secondary
inclusions after mineralization (Goldfarb RJ and Groves DI,
2015). A few of the H-O isotope values of quartz and sericites
in the ores of the Dayin ’gezhuang gold deposit fell in the
zones of primary magmatic water, metamorphic water, and
mantle water, while most of them fell between the zone of
Mesozoic meteoric water in the Jiaodong area and the zone of
primary magmatic water, metamorphic water, or primary
mantle water. The H-O isotopic values of quartz at stage I fell
in and near the zones of primary mantle water and primary
magmatic water, while those of sericites at stage II/III fell in
the zones of primary magmatic water and metamorphic water.
Moreover, the H-O isotopic composition gradually drifted to
meteoric water from stage I to stage IV (Fig. 15). Considering
that the Jiaodong Group has a metamorphic age of

713

approximately 1.8—1.7 Ga (Faure M et al., 2003), which is far
earlier than the metallogenic age, the ore-forming fluids
unlikely originated from the metamorphic water of the
Jiaodong Group. Moreover, this conclusion is also supported
by the fact that no metamorphic event occurred in the Dayin’
gezhuang mining area during the metallization. Therefore, the
fluids in the early ore-forming stage might be magmatic water
or mantle water, and then meteoric water gradually entered
the ore-forming fluids in the late ore-forming stage.

According to the aforementioned characteristics of fluid
inclusions in the Dayin ’gezhuang gold deposit, the authors
hold that the ore-forming fluids of this deposit originate from
mixed sources. Specifically, the early fluids may come from
the magmatic fluid system in the process of crust-mantle
interactions, and the late fluids may be mixed with much
meteoric water. Large-scale magmatism occurred in the
Jiaodong area during the gold mineralization of the Dayin’
gezhuang gold deposit, forming the Guojialing and
Weideshan granites originating from the mixing crust-mantle
source, mantle-derived lamprophyres, and the Liulinzhuang
high-magnesium diorites originating from of differentiation of
mantle-derived materials (Song MC et al., 2020a, 2020b;
Wang B et al., 2021). This result indicates that the gold
metallogenic period of the Dayin’gezhuang gold deposit was
just a period of strong crust-mantle interactions.

5.4. Sources of ore-forming minerals

There are still different understandings of the sources of
ore-forming materials in the Jiaodong gold deposits.
Researchers holding the view of crust-derived ore-forming
materials believe that the metals originate from the
Precambrian metamorphic basement and the Upper Jurassic
Linglong granites in the Jiaodong area or originate from the
Precambrian accretionary metamorphic complexes that were
activated and reconstructed during the Mesozoic (Yang LQ et

15
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Fig. 14. Plots of total homogenization temperature (7. o) vs salinity of fluid inclusions from the Dayin’gezhuang gold deposit. Data source:

Chai P et al., 2019a, 2019b; Dai XL, 2012.
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Fig. 15. 0D vs. 5'%0 diagram of ore-forming fluids in the Dayin’gezhuang gold deposit (base map from Sheppard SMF, 1996). References are
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al., 2014b). Researchers holding the view of mantle-derived
ore-forming materials believe that the metals mainly originate
from the deep mantle-derived magmas in the source area of
intermediate-mafic dikes (Tan J et al., 2015; Yuan ZZ et al.,
2019) and that the enriched mantle-extracted gold to form
ores during its partial melting (Wang ZC et al., 2020). Some
researchers believe that the enriched lithospheric mantle of
the North China Plate has a reservoir with high gold content
after undergoing long-term subduction and metasomatism
(Deng J et al., 2020a, 2020b). In recent years, some
researchers consider that the ore-forming materials are related
to the dehydration and desulfurization of the subducted Paleo-
Pacific Plate and the devolatilization of the enriched mantle
wedge (Deng J et al., 2015; Yang LQ et al., 2016; Liu JC et
al., 2018; Wei YJ et al., 2019; Zhang YW et al., 2020).

The S isotopes of the Dayin’gezhuang gold deposit show
a positive deviation from meteorite sulfur and a concentrated
distribution of °*Scpr values, indicating the high
homogenization of S. The 0**S¢pr values of the gold deposit
largely overlap with those of the Jiaodong Group, the
Linglong, Guojialing, and Aishan granites, and intermediate-
mafic dikes (Fig. 16), indicating their origins are closely
related to each other. The average 0>*Scpr value of the gold
deposit is higher than that of the Jiaodong Group and Early
Cretaceous mafic dikes containing more mantle components,
lower than that of the crust-derived Jingshan Group and close
to that of the Linglong granites mainly formed by crustal
remelting and that of the Guojialing granites formed by mixed
crust-mantle melting (Hou ML et al., 2007; Wang ZL et al.,
2014). These results indicate that the S source has the
characteristics of crust-mantle interactions.

Asshowninthe 2’Pb/***Pbvs. 2%°Pb/2%Pb diagram (Fig. 17),
all the Pb isotope values of the Dayin’gezhuang gold deposit
fell between the mantle and orogen evolution lines and show a
linear distribution trend, except one value, which fell on the
upper crust evolution line. Moreover, the Pb isotope values of
the Jiaodong Group fell between the mantle and upper crust
evolution lines or near the mantle and lower crust evolution
lines. The Pb isotope values of the Linglong granites fell near
the mantle evolution line and between the mantle and lower
crust evolution lines. The Pb isotope values of the Guojialing
granites generally fell between or near the mantle and orogen
evolution lines. All these results indicate the characteristics of
mixed crust- and mantle-derived Pb. The Pb isotope values of
the ores in the Dayin ’gezhuang gold deposit largely
overlapped with those of the main geological bodies in the
Jiaodong area, indicating that ores share the material sources
with and inheriting properties from their surrounding rocks
(i.e., the Linglong granites and the Jiaodong Group).

The S and Pb isotopic characteristics of the Dayin ’
gezhuang gold deposit are similar to those of the ore-hosting
rocks, and the 9°*Scpr values of the deposit are distributed
more intensively than those of the ore-hosting rocks. This
result indicates that the metallogenic materials mainly
originate from ore-hosting rocks. Since the Jiaodong area
underwent strong crust-mantle interactions during the Early
Cretaceous, the ore-hosting rocks are dominated by crust-
derived materials and are significantly mixed with mantle-
derived materials. Therefore, the authors of this paper hold
that the Dayin ’gezhuang gold deposit mainly has crust-
derived ore-forming materials, which also contain a small
quantity of mantle-derived materials.
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Fig. 16.

a—Sulfur isotopic histogram in the Dayin’gezhuang gold deposit; b—comparison of sulfur isotopic compositions between Dayin’

gezhuang gold deposit, Jiaodong Group, Jingshan Group, Mesozoic magmatic rocks, and intermediate-mafic dikes. Data source: Li ZL and
Yang MZ, 1993; Mao JW et al., 2005; Hou ML et al., 2006; Dai XL, 2012; Zhang RZ et al., 2016; Yuan ZZ et al., 2019.
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Fig. 17.

Lead isotopic compositions of the Dayin ’gezhuang gold deposit, shown on 2’Pb/**Pb vs. 2%°Pb/?*Pb (a) and 2%Pb/**Pb vs.

206pp294pp (b). Data source: Cai YC et al., 2013; Chen ZS et al., 1994; Guan K et al., 1997; Li ZL and Yang MZ, 1993; Liu XF et al., 2018; Ma
Letal., 2014; Ma ZD, 1998; Mao JW et al., 2005; Tan J et al., 2012; Yang SW et al., 1986; Yuan ZZ et al., 2019.

5.5. Genesis and metallogenic process of the Dayin gezhuang
gold deposit

The Dayin ’gezhuang gold deposit is hosted in the
Zhaoping Fault zone. The hanging wall of this fault zone is
mainly composed of Precambrian metamorphic rocks, and the
footwall of the fault is composed of Upper Jurassic Linglong
granites. Many mafic dikes are distributed in the deposit, and
there are still Earliest Lower Cretaceous Guojialing and
Weideshan granites (such as Aishan and Nansu plutons) near
the deposit. These geological bodies and fault structures are
closely related to gold mineralization. According to the
diagenetic and metallogenic time, the geological bodies

related to the Jiaodong gold deposits can be divided into ore-
hosting  geological bodies (including  Precambrian
metamorphic rocks and Linglong and Guojialing granites) and
geological bodies during the ore-forming period (including
Weideshan granites and mafic dikes). As indicated by relevant
studies, the Linglong and Guojialing granites have the
characteristics of adakites and resulted from the partial
melting of the paleocrust (Wang B et al., 2021); the
Weideshan granites have the characteristics of arc granites
and arose from the partial melting of the juvenile lower crust,
and the occurrence of dioritic inclusions in Weideshan
granites and the widespread distribution of mafic dikes in the
deposit indicate the existence of mantle-derived magmatism
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(Song MC et al., 2020b). These results indicate that gold
mineralization occurred during the transition from adakitic
granites to arc granites and the crust-mantle interactions. As
shown by the thermochronological study results of granites,
the Linglong granites slowly cooled from approximately
800°C at their formation age of 160 Ma to approximately
450+50°C at approximately 143 Ma (Charles N et al., 2013);
the Guojialing granites cooled at a rate of 100°C/Ma from
130—-126 Ma to 124 Ma; the Weideshan granites experienced
a more rapid cooling process after forming and rapidly cooled
to approximately 350+£50°C at 122 —118 Ma, and granites
cooled at a rate of above 30°C/Ma at 117-110 Ma (Wu L et
al., 2018). The thermochronological study of Jiaodong gold
deposits after mineralization shows that they have
experienced a very slow cooling and uplifting process since
approximately 95 Ma, with a cooling rate of 0.4-2.4°C/Ma
(Zhang QB et al., 2022). Therefore, the gold mineralization
was accompanied by rapid crustal uplifting and cooling.
Based on the geological process characteristics related to
gold mineralization mentioned above, the authors hold that
the formation of the Dayin’gezhuang gold deposit is related to
crust-mantle interactions, granite emplacement, the
transformation of geochemical properties, and rapid crustal
uplifting and that the Dayin ’gezhuang gold deposit was
formed by thermal-uplift and extensional tectonism (Song MC
et al., 2014, 2022a). During the Upper Jurassic, the large-scale
continental crust in the Jiaodong area remelted due to the
post-collision and compression of the North China Plate and
Yangtze Block, as well as the crustal thickening caused by the
subduction of the Paleo-Pacific Plate or the Izanagi plate
toward the Asian Continent, forming Linglong granites
(Zhang YQ et al., 2007). During the Lower Cretaceous, the
paleo North China Plate was destroyed due to the subduction
and retreat of the Paleo-Pacific Plate. As a result, the
lithosphere and the crust intensively thinned, and the
asthenosphere upwelled, leading to intense crust-mantle
material exchange (Zhu RX et al., 2011). The partial melting
of the enriched lithospheric mantle produced mafic magmas,
and the underplating of mantle-derived mafic magmas acted
on the paleo or juvenile crust at the bottom, causing the partial
melting of the rocks at the crust bottom (Qiu LG et al., 2008).
Mantle-derived mafic magmas intruded upward and
differentiated, forming lamprophyres and other dark dikes.
Moreover, different degrees of mixing, crystallization, and
differentiation of mantle- and crust-derived magmas formed
Guojialing, Weideshan, and Laoshan granites (Wang B et al.,
2021). The strong crust-mantle interactions, large-scale
magmatism, and the material exchange arising from the
transformation from adakitic granites to arc granites and from
the ancient lower crust to the juvenile lower crust indicated by
the granite transformation during the Lower Cretaceous
provided abundant fluids and material sources for gold
mineralization. The large-scale magmatism during the Lower
Cretaceous was accompanied by the rapid uplifting of
intrusions and the crust and strong extensional tectonism,
forming a thermal-uplift extensional tectonic system (Song

MC et al, 2015, 2018). Since the rapid uplift of magmas
strongly jacked up the shallow surrounding rocks, many
extensional fracture structures were formed in the early
Linglong granites, and detachment faults were formed along
the interface between the Linglong granites and the
Precambrian metamorphic rocks, creating favorable space for
accumulation and mineralization of ore-forming fluids.
Moreover, as the magmas were uplifted rapidly, the
temperature and pressure of fluids dropped sharply, resulting
in immiscibility (phase separation) or boiling. Consequently,
large numbers of components such as CO,, and H,S escaped,
the pH of the system increased, and fluids containing metal
elements such as Fe and Cu reacted with the fluids containing
S, forming sulfides such as pyrites and chalcopyrite. The
escape and consumption of components such as CO, and H,S
reduced the stability of gold-bearing complex compounds in
the fluids. Finally, golds in the form of native gold and
electrum were precipitated and mineralized along with metal
sulfides such as pyrites at the pressure fluctuation parts, i.c.,
the high-to-low transition parts of the dip angle of detachment
faults (Fig. 18).

6. Conclusions

(1) The Dayin’gezhuang gold deposit is a supergiant gold
deposit with total resources of more than 180 t and consists of
No. 1 and No. 2 orebodies. The orebodies in the deposit are
distributed with the regularity of pinch-out and recurrence,
and ore-free intervals exist between the deep and shallow
orebodies. The orebodies have a pitch direction of NNE, a
pitch angle of approximately 55°, a plunge direction of NEE
75°, and a plunge angle of approximately 22°. The ore-
controlling Zhaoping Fault is a shovel-shaped stepped fault,
and the fault dip angle presents three sections of stepped high-
to-low transitions at an elevation of —2000—0 m. The gold
mineralization enrichment areas are mainly distributed in the
high-to-low transition parts of the dip angle and the relatively
gentle steps, forming a stepped pattern from shallow to deep.

(i) The Dayin ’gezhuang gold deposit was formed at
approximately 120 Ma. The ore-forming fluids were H,O-
CO,-NaCl-type hydrothermal solutions with medium-low
temperature and medium-low salinity. The fluids evolved
from high to medium and then low temperature, and the fluid
immiscibility occurred at the main ore-forming stages (II and
III). The H-O isotopic characteristics indicate that the early
fluids may originate from the magmatic fluid system with
crust-mantle interactions, and the late fluids may have been
mixed with much meteoric water. The S and Pb isotopic
characteristics indicate that the Dayin’gezhuang gold deposit
mainly has crust-derived ore-forming materials, which also
contain a small quantity of mantle-derived materials.

(iii) The Dayin ’gezhuang gold deposit was formed by
thermal uplift and extensional tectonism. The strong crust-
mantle interactions, large-scale magmatism, and the material
exchange arising from the transformation from adakitic
granites to arc granites and from the ancient lower crust to the
juvenile lower crust during the Lower Cretaceous provided


http://dx.doi.org/10.31035/cg2022058

Liu et al. / China Geology 5 (2022) 696—721 717

/ Hanging wall hydrothermal ~
/ alteration zones ¥
Footwall hydrothermal
Linglong alteration zones
granite
Precambrian basement
T NN Zhaoping
Guojialing Fault
granite =
R
Gold orebodies
S
/(' (; AN
f é BB N
Weideshan Ore fluids NS
granite f Intermediate-
/(' mafic dikes

Fig. 18. A proposed cartoon illustrating the ore genesis of the Dayin’gezhuang gold deposit.

abundant fluids and material sources for mineralization.
Moreover, the detachment faults formed by the rapid
magmatic uplift and the extensional tectonism created
favorable temperature and pressure conditions and space for
fluid accumulation and gold precipitation and mineralization.
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