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The estuary and coastal zone are the key areas for socio-economic development, and they are also the
important channels for pollutants transported to the sea. The construction of the Jiaozhou Bay Bridge
changed the hydrodynamic condition of the bay, which made the self-purification capacity of the bay
weakened and the pollution in the estuary and adjacent coastal zone become more serious. In this study, 55
surface sediment samples were collected from the three seriously polluted estuaries and the adjacent
coastal zone of Jiaozhou Bay to comprehensively study how the benthic foraminifera response to heavy
metal pollution and human engineering, and to assess the ecological risks of the bay. A total of 80 species,
belonging to 42 genera, were identified in this study. The results showed that Cu, Pb, Cr, Hg, Zn, and As
had low to median ecological risks in the study area which would definitely affect the ecological system.
The construction of the Jiaozhou Bay Bridge has resulted in pollutants accumulated at the river mouth of
Loushan River, which has adverse effects on the survival and growth of benthic foraminifera. The lowest
population density and diversity as well as the highest FAI (Foraminiferal Abnormality Index) and FMI
(Foraminiferal Monitoring Index) occurred at Loushan River Estuary which indicated that the ecological
environment of the northeastern part of Jiaozhou Bay (Loushan River Estuary) had been seriously
damaged. Licun River and Haipo River estuaries and the adjacent coastal zone were slightly polluted and
had low ecological risk. As a consequence, it suggested that the supervision of industrial and domestic
waste discharge and the protection of the ecological environment in northeast Jiaozhou Bay should be paid
more attention.

©2022 China Geology Editorial Office.

1. Introduction

serious especially in the estuary and coastal zone. Compared
with other pollutants, heavy metals are most harmful to the

As the connection between land and ocean, the estuary
and coastal zones are the most active area of socioeconomic
activities and the most sensitive area response to global
change (Yin P et al., 2017). With the rapid development of the
social economy, estuaries have become the important
channels for rivers to carry pollutants into the sea. In recent
years, environmental pollution is getting more and more
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ecological environment and human health (Liu R and Huang
Y, 2019; Negar F et al., 2020). They are enriched in
sediments, with the continued accumulation, toxic metals will
be absorbed by benthic creatures. Furthermore, through the
food chain, it will ultimately affect human health (Lawrence
AL and Mason RP, 2001). Till now, the regional ecological
risk assessment by using heavy metals is often inconsistent,
according to the different evaluation indexes (Xiao CL et al.,
2017). Therefore, it is necessary to combine the evaluation
index with the bio-indicators to evaluate the pollution degree.
Benthic foraminifera, a kind of marine protozoa, most of
which live in the ocean, while a few live in shallow water
marginal environments (shoal, gulf lagoon, and estuary) (Jain
S, 2017). Foraminifers are small individuals with a short life-
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cycle and are widely distributed with abundant quantity and
high biodiversity (Murray JW, 1991). Their whole life
processes are almost in situ (Kitazato H, 1988). When
environmental factors (water depth, salinity, temperature,
substrate type, food supply, sedimentation rate, and pollution,
etc.) change, they will quickly respond (Boltovskoy E et al.,
1991; Lo Giudice Cappelli E et al., 2019; Benito X, 2020).
Foraminifera is much more sensitive and tolerant than other
organisms (such as ostracods, crustaceans) which would
generate  malformation when encountering  stressed
environmental conditions (Le Cadre V and Debenay JP, 2006;
Andreas AL and Bowser SS, 2021). Therefore, they are the
most suitable organisms as bio-indicators of environmental
status (Armynot du Chatelet E et al., 2004; Albani A et al.,
2007). Among these influencing factors, heavy metals have
the greatest impact on foraminifera. Recent studies have
focused on the response of foraminiferal population density,
diversity, assemblages, and morphological abnormalities to
heavy metal and organic pollution (Alve E, 1995; Yanko V et
al., 1994, 1998; Samir AM and EI-Din AB, 2001; Geslin E et
al., 2002; Ferraro L et al., 2006; Frontalini F et al., 2009;
Mendes I et al., 2013; EI Kateb A et al., 2020; Gildeeva O et
al., 2021). A large number of studies have confirmed that
heavy metals (Cr, Cu, Hg, Pb, and Zn) have significant effects
on the distribution of foraminiferal assemblages in ports,
lagoons, estuaries, and coastal areas (Coccioni R, 2000;
Armynot du Chatelet E et al., 2004; Frontalini F et al., 2009;
Nagendra R and Reddy AN, 2019). The population density
and diversity of foraminifers often decrease in the polluted
areas (Bergin F et al., 2006; Debenay JP and Fernandez JM,
2009; Li T et al., 2014, 2015), with the appearance of
morphological abnormalities (Frontalini F and Coccioni R,
2008; Frontalini F et al., 2009). A few studies conducted on
foraminiferal culture in the contaminated environment by a
single trace element in the laboratory have also shown that
there were various deformities under different concentrations
of heavy metals (Le Cadre V and Debenay JP, 2006; Nigam R
et al., 2009; Brouillette PE et al., 2019). Furthermore, a few
studies have begun to explore the influence of heavy metals
on foraminifera from the perspective of molecular structure,
and the results show that Pb and Hg would lead to changes in
the individual morphology and molecular structure (Frontalini
F et al, 2015, 2017). However, the same genus of
foraminifera may be sensitive in this region and resistant to
contamination in another area, so the absence of a specific
species cannot be used to access ecological quality (Alve E,
1995). Thus, more studies should be carried out in the
worldwide area.

2. Goological and environment background

Jiaozhou Bay is located in the south of Shandong
Peninsula and is a semi-closed bay (Fig. 1). Silt is the main
type of sediment on the eastern coast which is mainly
distributed in the shallow range of 5 m isobath, and the grain
size becomes coarser near the Cangkou Waterway (Wang YP

et al., 2000). The coast of Jiaozhou Bay is suffering from
industrial and domestic pollution in recent years (Xu FJ et al.,
2017; Liu S et al., 2020). The main ports and industries of
Qingdao City are distributed along the eastern coast of
Jiaozhou Bay, which is significantly affected by human
activities. Especially, the Loushan River, Licun River, and
Haipo River have become the main channels for industrial and
domestic sewage to enter the bay (Qiao LL et al., 2019). Due
to the reduced river runoff in recent years, the salinity of
seawater in the estuary was close to the adjacent sea area
(Dong H, 2012). Heavy metals were accumulated in surface
sediments of the estuaries which were far higher than the
background value (Li Y et al., 2006; Guo JH et al., 2012; Liu
S et al., 2020). The reversing current of the Cangkou
Waterway (Fig. 1) impedes the diffusion of pollutants from
the east coast to the westward (Wang HJ et al., 2007),
resulting in a high content of pollutants in the eastern
Jiaozhou Bay (Li TT et al., 2016). Moreover, the topography
of Jiaozhou Bay has been significantly changed by intensive
anthropogenic  activities, land reclamation, and the
construction of the Jiaozhou Bridge over the last decades
(Yuan Y et al.,, 2021). The cross-bay bridge has a relatively
large impact on the hydrodynamic conditions which will
definitely affect the ecological environment of Jiaozhou Bay
(Li P etal., 2014; Chen YY et al., 2019). Therefore, Jiaozhou
Bay is considered to be a natural laboratory to study how the
benthic foraminifers respond to human activities including
heavy metal pollution and coastal engineering.

In this study, the Loushan River, Licun River, and Haipo
River estuaries and adjacent coastal zone were taken as the
research object. The aims are: (1) Investigate the distribution
of benthic foraminifera of eastern coast of Jiaozhou Bay and
evaluate the ecological risks of the three estuaries by using
ecological risks index; (2) try to explore how the distribution
characteristics of benthic foraminifera (population density,
diversity, morphological deformities) response to the
environmental factors (including heavy metals) and Jiaozhou
Bay Bridge based on the results of the investigation. The
results will be of great significance for better understanding
the effects of human activities on benthic communities and
the complex ecosystem of Jiaozhou Bay.

3. Materials and methods
3.1. Study area and sampling sites

Four sewage outfalls including Loushan River Estuary,
Qingdao Alkali Industry Co. LTD, Licun River Estuary, and
Haipo River Estuary were found in the study area which was
all seriously polluted (Fig. 2). Of these sewage outfalls, Licun
River Estuary was mainly polluted by domestic sewage, while
the other sewage outfalls were mainly discharged industrial
sewage. The sewage outfalls of Qingdao Alkali Industry Co.
LTD were seriously polluted (Fig. 2b). According to the
preliminary survey, the mid-lower reaches of the Licun River
were dry all year-round and the stench could be smelled
during the investigation (Fig. 2d). A yellow-green liquid was
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Fig. 1. (a) Map showing the location of the study area; (b) map showing the water depth of the study area with sampling stations. The loca-
tions of the Jiaozhou Bay Bridge and the Cangkou Waterway are also showed on this map.

observed and the pungent stench was smelled in the Haipo
River Estuary (Fig. 2c). The mid-lower reaches of the
Loushan River were dry and covered with weeds, and there
was only a half-meter-wide channel in the middle which was
filled with sewage (Fig. 2a).

A grab sampler was used to collect the upper 5 cm surface
samples. Time and water depth were recorded at the same
time. The surface sediments are mainly composed of silt and
clayed silt. A total of 55 surface samples were obtained in this
study (including 11 in the Haibo River Estuary, 19 in the
Licun River Estuary, and 25 in the Loushan River Estuary)

(Fig.1).
3.2. Foraminiferal analysis

The collected surface sediment samples were dried at 60°C
and soaked in the 10% oxyful solution. They were then gently
washed with tap water through a diameter of 0.063 mm sieve
to remove clay, silt, and any excess dye. The residual fraction
was dried again and through flotation. The dry samples
obtained were splitted up into eight equal parts. 1/8 samples
were observed under a stereo-binocular microscope to identify
the foraminifera. The data of living, dead and total individuals

were counted respectively. The statistical parameters
included: (1) Abundance, population density, that is, the total
number of foraminifera in 50 g dry sample; (2) S, simple
differentiation, that is, the number of foraminifera species in
the sample; (3) H, Shannon-Weiner index, reflects the degree
of species diversity and evenness of biological population.
The calculation formula of the Shannon-Wiener index:
H=-3"7 PilnPi, where Pi is the ratio of the number of
individuals to the total number of individuals in the group;
(4) the percentage of major genera species (%), the ratio of
major genera species to the total foraminiferal population
quantity; (5) FAI (Foraminiferal Abnormality Index), the
percentage of the population quantity of the deformities in the
sample to the total number of the foraminiferal population;
(6) FMI (Foraminiferal Monitoring Index), represents the
percentage of the number of species of the deformities to the
total number of species.

3.3. Total organic carbon, heavy metal analysis, and pH

The surface samples, as well as the water samples, were
collected at the sewage outfalls in 2009 and the location was
shown in Table 1. The water samples were only used for pH
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Fig. 2.

a —Pictures of the lower reaches of the Loushan River (cited from http://house.qingdaonews.com/news/2015-04/30/content

11035286 _all.htm); b—sewage outfall of Qingdao Alkali Industry Co. LTD (cited from http://ocean.qingdao.gov.cn/n12479801/index.html);

c—sewage outfall of Haipo River Estuary; d—Licun River Estuary.

Table 1. Heavy metal contents in eastern Jiaozhou Bay, China.

Stations Longtitude/ Latitude/  As/ Cd/ Cr/ Cu/ Hg/ Pb/ Zn/
(E) (N) (mg/kg) (mgkg) (mgkg) (mgkg) (mghg) (mghg) (mghkg)

QBO030-T-1 120.36 36.21 23.0 1.17 1160 151 0.88 190 531
QBO031-T-1 120.36 36.20 6.13 0.46 46.8 59.6 0.76 58.6 78.2
QBO033-T-1 120.35 36.16 6.66 0.28 37.8 48.4 0.35 66.2 306
QBO035-T-1 120.34 36.29 4.42 0.11 53.5 46.8 0.029 18.9 79.0
QB036-T-1 120.28 36.18 11.9 0.69 59.6 242 0.078 323 86.2
QB037-T-1 120.28 36.18 5.88 0.29 17.4 18.2 0.40 92.4 90.8
QBO038-T-1 120.24 36.20 7.30 0.12 33.6 49.4 0.037 23.6 64.3
Background level 3.6 0.13 31 132 0.04 31 69
effect range low (ERL) (Long ER et al., 1995) 8.2 1.2 81 34 0.15 46.7 150
Effect range median (ERM) (Long ER et al., 1995) 70 9.6 370 270 0.71 218 410

analyses and were measured by a pH meter. The surface
samples were used for total organic carbon (TOC) and heavy
metals (including Cu, Pb, Zn, Cd, Cr, As, Hg) analyses.
Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
was used for Cu, Pb, Zn, Cd, Cr analysis. Atomic
Fluorescence Spectroscopy (AFS) was used for As and Hg.
The potassium bicarbonate oxidation-reduction volumetric
method was used for the analysis of TOC. All samples were
analyzed at the Experiment and Testing Center of Qingdao
Institute of Marine Geology, China Geological Survey.

4. Results
4.1. Foraminiferal assemblages

A total of 80 species, belonging to 42 genera of benthic
foraminifera were identified in 55 surface samples. All of the

foraminifera found in the samples belongs to the benthic
species, which is due to the estuarine and coastal
environment.

The assemblages are mainly dominated by
Quinqueloculina bellatula (25.86%), Ammonia beccarii
(21.49%), Elphidium  magellanicum  (13.48%), and
subordinately by Trochammina inflata, Paratrochammina sp.,
Ammobaculites agglutinans and Arenoparella asiatica, etc.
Q.bellatula is the dominant species in Loushan River Estuary,
with a relative abundance of 94.55% at station 5. 4. beccarii
and E. magellanicum have an advantage, with the highest
relative abundance at station 20, reaching 60.47% in the
offshore area in Loushan River Estuary. 4. beccarii, with the
highest relative abundance of 82.69% at station 3 in the inner
area, is the dominant species in Licun River Estuary. E.
magellanicum has the highest relative abundance in the
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coastal area, reaching 44.96% at station 10. The relative
abundance of 4. beccarii is very high in the inner-most area
of Haipo River Estuary, which is highest at station 9, reaching
82.35%; Atrochammina sp. reaches 50% at the station 8 out of
the estuary; 4. asiatica enjoys an advantage near the shore,
accounting for 37.72% at station 1.

The abundance and diversity of benthic foraminifera are
lower than that of the normal shallow sea environment, and a
trend of gradual increase from the estuary to the sea and from
Loushan River Estuary to Haipo River Estuary (Figs. 3a—c).
The abundance of foraminifera (Abundance) in the mouth of
the Loushan River, Licun River, and Haipo River are in the
range of 288 —3456, 56 —10272, and 136 —5328, with an
average of 808, 1955, and 1804, respectively. The number of
species (S) in the river mouth of Loushan River, Licun River,
and Haipo River is in the range of 2-27, 2-43, 2-37, with an
average value of 9.4, 19.6, 17.5, respectively. The Shannon-
Wiener index (H) of the Loushan River Estuary, Licun River
Estuary, and Haipo River Estuary is in the range of 0.25-2.35,
0.60-2.79, 0.47-2.62, with an average value of 1.11, 1.91,
1.82, respectively.

Other types of benthic organisms, such as Ostracoda,
bivalve, and gastropod, are also found in this study, in which
only one deformed test is found (Fig. 4), while foraminifera is
identified as deformed of 28 species, accounting for 35% of
the total species. It shows that foraminifera has a high
sensitivity to pollution as a bio-indicator and is superior to

other organisms. There are seven types of deformities showed
in this study: (1) Abnormal additional chamber (s); (2) distorted
chamber arrangement or changed in coiling; (3) reduced
chamber size; (4) aberrant chamber shape and size; (5) distorted
chamber arrangement or change in coiling and aberrant
chamber shape and size; (6) spiroconvex; (7) complexity (Fig. 4).

FAI and FMI are concentrated in Loushan River Estuary,
showing a decreasing trend from the estuary to the sea and
from Loushan River Estuary to Haipo River Estuary (Figs. 3d,
e). FAI (%) of the Loushan River Estuary, Licun River
Estuary, Haipo River Estuary is in the range of 1.85-41.82,
0 —-14.29, 0 -5.88, with an average of 10.95, 4.4, 2.62,
respectively. FMI (%) of Loushan River Estuary, Licun River
Estuary, and Haipo River Estuary is in the range of 0-100,
0 —25, 0 -50, with an average of 27.57, 9.87, 14.74,
respectively.

4.2. Heavy metal and TOC concentrations

Heavy metals and TOC are obviously enriched in the
estuaries (Fig. 5), indicating that rivers play important roles in
carrying pollutants into the sea. Cu, Pb, Zn, Cr, Cd, Hg, As, and
TOC are concentrated in Loushan River Estuary (Table 1).
The values of pH varying from 7.5 to 8.4 in the study area (Fig. 5).
The area between Loushan River Estuary and Licun River
Estuary shows the highest pH value which may be related to the
sewage outfall of Qingdao Alkali Industry Co. LTD.
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Fig. 4.

SEM photomicrographs of benthic foraminifera bearing different morphological abnormalities: 1-3 — Quinqueloculina bellatula;

4—6—Ammonia beccariiy T7-11-Elphidium magellanicum; 12—15—Buccella frigida; 16—Elphidium advenum; 17, 18—Hanzawa sp.; 19—Ammonia
compressiuscula; 20— Trochammina inflata (all the scale bar=50 pum); 21—gastropod (as a contrast). 2, 3—distorted chamber arrangement or
change in coiling; 5-reduced chamber size; 7—complexity; 1, 4, 6, 10, 12—-15, 19—aberrant chamber shape and size; 8, 16—abnormally additional
chamber; 9, 17, 18, 20—distorted chamber arrangement or change in coiling and aberrant chamber shape and size; 11-spiroconvex.

5. Discussion

5.1. Sediment transport after the construction of Jiaozhou Bay
Bridge

According to the numerical results, the suspended
sediment concentration is relatively low in Jiaozhou Bay
which is consistent with the low runoff of rivers surrounding
the bay (Fig. 6). It is higher in the west of the bay than that in

the east. This is mainly related to the lower runoff of rivers
(Loushan, Licun, and Haipo Rivers) in the Eastern Jiaozhou
Bay. Dagu River on the western coast contributes a lot of fine
sediments to the west of the bay. In addition, the suspended
sediment concentration decreases rapidly from the bay head
towards the bay mouth which indicated that the suspended
sediments could hardly be transported out of the bay (Fig. 6).

The construction of the Jiaozhou Bay Bridge seriously
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Fig. 5. Map showing the distribution of Cu (a), Pb (b), Zn (c), Cr (d), Cd (e), As (f), Hg (g), pH (h), and TOC (i) of the Jiaozhou Bay, China.

affected the hydrodynamic condition of the bay (Qiao LL et
al., 2019). Residual current is supposed to be much more
important in long-period mass transportation (Li P et al.,
2014). The reduced number and strength of residual current
circles indicate that water exchange capacity has been
weakened due to the piers’ blockage (Fig. 7; Li P et al., 2014;
Qiao LL et al., 2019). Especially, the strength of residual
current circles in the bay mouth has been greatly reduced
which would suppress the capacity of sediments to be diffused
into the ocean. As a result, the pollutants from the rivers
would be deposited along with the sediment and are mainly
trapped in the bay which would ultimately lead to the
deterioration of the ecological environment. Above all, in the
northeast of the bay, the loss of the residual current circles

after the completion of the cross-bay bridge would reduce the
capacity of pollutants exchange (Li P et al., 2014; Chen Y'Y et
al., 2019). Therefore, the ecological system of the northeast of
the bay needs to be focused on in the future.

5.2. Assessing the pollution degree in Eastern Jiaozhou Bay

Compared with background concentrations of Cu, Pb, Zn,
Cr, Cd, Hg, and As in soils of Qingdao City, the heavy metal
concentration in each station has exceeded the background
concentrations in Eastern Jiaozhou Bay which are mainly
related to human impact. Especially, Cr and Hg contents of
Loushan River Estuary exceed the background values by
more than 10 times (Table 1). The heavy metals
concentrations in the study area are compared with the
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Fig. 6. Distribution of suspended sediment concentrations in Jiaozhou Bay during different periods. a—beginning of the flood tide for spring
tides; b—maximum flood tide for spring tides; c—high tide for spring tides; d—beginning of the ebb tide for spring tides; e-maximum ebb tide for
spring tides; f—low tide for spring tides; g—maximum flood tide for neap tides; h—maximum ebb tide for neap tides (cited from Zhang Y et al.,
2019).

adverse biological effect values. The results show that the 5.3. Foraminifera distribution responses to environmental
trace elements (except Cd) are exceeding the effect range low factors

(ERL). Furthermore, Cr, Hg and Zn in Loushan River Estuary

have exceeded effect range median (ERM) which indicates Q. bellatula, A. beccarii, and E. magellanicum are most
that the biological environment in Loushan River Estuary was abundant in this study. They are widely distributed in the
bearing risks. worldwide intertidal zone (Woodroffe S et al., 2005). A.
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beccarri is considered to be the euryhaline shallow-water
species in the world, which can survive in the salinity of
1 %0 —40 %o (Debenay JP et al., 1998) and is common in
estuaries, lagoons, and other land-continuation phases within
the water depth of 20 m. Quinqueloculina and Elphidium
usually live in an environment of salinity from 10%o to 33 %o
and pH larger than 7 (Bradshaw JS, 1957; Orabi OH et al.,
2017). Due to the low runoff of the three rivers, the salinity of
the study area varied little which was close to the normal
marine environment in 2013 (Gong XB et al., 2015).
According to the distribution of environmental factors (Fig. 5),
the pH of eastern Jiaozhou Bay varied from 7.5 to 8.4. The
salinity and pH in the study area are suitable for these species
to  survive.  Paratrochammina  sp., Ammobaculites
agglutinans, and Arenoparella asiatica of the agglutinated
species are mainly distributed in the near-shore area of Haipo
River Estuary, which is supposed to be related to coarse-
grained sediments (Wang PX et al., 1986).

Environmental factors such as salinity, dissolved oxygen,
water depth will affect the foraminifera distribution
(Boltovskoy E et al., 1991; Bergamin L et al., 2020). Salinity
and water depth were considered to be the main factors
affecting the foraminifera distribution through the castration
analysis of the surface samples in the Pearl River Estuary (Wu
J et al., 2013). Based on the above discussion, the effect of
salinity can be basically eliminated. In this study, the authors
analyzed the relationship between foraminiferal abundance
(species) and water depth. The results show that from
Loushan River Estuary to Haipo River Estuary, the influence
of the water depth is gradually increased (Fig. 7). There is
little correlation between the abundance and water depth in
the Loushan River Estuary. As mentioned above, the study
area is seriously polluted according to the contamination. As a
consequence, heavy metal and organic pollution are deemed
to be the main factor affecting the distribution of foraminifera
in the Loushan River Estuary. The distribution of foraminifera

is more influenced by the water depth than heavy metal or
organic pollution in the coastal area near Haipo River Estuary.
However, water depth is not an independent factor controlling
the distribution of the organism but is the comprehensive
manifestation of many factors. There is a residual current
circle out of the Haipo River Estuary after the completion of
the Jiaozhou Bay Bridge (Li P et al., 2014). The residual
current circle will enhance the water exchange which is
beneficial to foraminifera growth. Therefore, the abundance
of benthic foraminifera is the highest out of the Haipo River
Estuary.

5.4. Foraminifera distribution responses to heavy metal and
organic pollution

The previous study has revealed that heavy metals do not
support the survival of any species (Alve E and Olsgard F,
1999). The sensitive species would be reduced or even
destroyed under the high concentrations of toxic metals, while
the resistant species will rapidly multiply and take advantage
which would result in low population density and diversity
(Frontalini F and Coccioni R, 2008, 2011; Nagendra R and
Reddy AN, 2019). Organic pollution may lead to oxygen
depletion in the sediment and would further affect the benthic
communities (Kaithwar A et al., 2020). This can be by which
benthic foraminiferal assemblages were mainly affected by
TOC, As, and Cd (EI Kateb A et al., 2020). The hierarchically
clustered heat map is a visualization method for analyzing the
distribution of biological data and can be used to merge small
clusters layer by layer from the bottom up (Fernandez NF et
al., 2017). According to the heat map and hierarchical
clustering of the relative abundance of foraminifera, the study
area can be divided into two clusters (Cluster A and Cluster
B) (Fig. 8). Q.bellatula is the dominant species in Cluster A
(samples from stations 1 to 18 in Loushan River Estuary).
A.beccarii and E. magellanicum are the dominant species in
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Cluster B (samples from Licun River Estuary, Haipo River
Estuary, and coastal area of eastern Jiaozhou Bay).
Foraminiferal biotopes in the area of Loushan River Estuary
(Cluster A) are obviously different from those of the other
areas (Fig. 8). The foraminiferal abundance and diversity of
Cluster A are much lower than those of Cluster B (Table 2).
As mentioned above, the concentrations of heavy metals and
TOC in Loushan River Estuary area were quite higher than
those of the Licun River Estuary and Haipo River Estuary
areas (Fig. 5). Therefore, the foraminiferal biotopes of Cluster
A are deemed to be severely affected by heavy metals and
TOC. As discussed above, the Jiaozhou Bay Bridge would
reduce the capacity of water exchange in the northeastern part
of the bay which would make the heavy metals and TOC
contamination be concentrated in the northeastern part of the
bay. Although samples from station 19 to 26 of Loushan
River Estuary is located in the northeastern part of the bridge,
the foraminiferal biotopes of these samples are close to those
of the Haipo and Licun Rivers areas which may be related to
the influence of the residual current circle (Li P et al., 2014).
This can be used to interpret why the foraminiferal biotopes
of Cluster A are different from those of the other areas. In
consequence, the authors suggested that the change of the

=)
3

residual currents makes the difference between Cluster A and
Cluster B more obvious.

In this study, foraminiferal biotopes and heavy metal
distribution are possibly influenced by the changed
hydrodynamic condition which is particularly affected by the
residual current circles. The ecological environment of the
estuary from the northeastern part of the bay has been
seriously damaged due to both industrial and domestic waste
discharge and the construction of the bridge. The previous
study has shown that bacterial community structure is heavily
affected by heavy metal contamination in the lower reaches of
the Licun and Haipo Rivers (Yao X et al., 2016). This
research indicates that samples from the outer part of the
estuaries and coastal area are considered to be less influenced
by heavy metal pollution due to the relatively open
hydrodynamic environment after the completion of the bridge.

5.5. Relationship between deformities and heavy metals

Abnormal salinity value (Brasier MD,1973), low nutrient
levels (Murray JW, 1963), rapidly changing environmental
conditions (Boltovskoy E et al., 1991), and different types of
pollution (Frontalini F and Coccioni R, 2011) would generate
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Fig. 8. Heat map of the relative abundance of each species (rows) in each sample (columns). Dendrogram classification of sampling sites pro-

duced by Hierarchical clustering method using Euclidean distance.

Table 2. Significant characteristics of the inner place of the three estuaries.

Q. Bellatula /% A. Beccarii /% E. Magellanicum /% Abundance S H FMI/% FAI/%
Cluster A Min 58.33 0 0 104 2 025 1429 4.65
Max 94.55 29.63 2222 1776 14 1.3 100 41.82
Mean  72.05 10.40 5.24 580.71 5.88 0.79 335 12.81
Cluster B Min 0 0 0 16 2 047 0 0
Max 24.62 82.69 44.96 10272 43 279 50 14.29
Mean  5.20 26.41 17.17 1750.53 17.61 1.86  12.38 3.63
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deformed tests. The tests begin to dissolve when pH is below
7.8 (Alve E and Nagy J, 1990), and begin to regenerate when
the pH returns to normal, which can also cause deformities
(Le Cadre V et al., 2003). As discussed above, pH and salinity
remained stable in the study area. Thus, the deformities are
mainly related to the pollution in this study. The
morphological deformities found in the estuaries and coastal
zone mainly include pygmies, sinistral tests, the shape of
chambers, distorted chamber arrangement, and changed in
coiling which has been regarded to be caused by heavy metal
pollution in previous studies (Yanko V et al., 1994; Samir
AM and El-Din AB, 2001; Le Cadre V and Debenay JP,
2006; Linshy VN et al., 2013; El-Kahawy R et al., 2018).
However, the mechanism of the effects of heavy metals on
benthic foraminifera is still unclear. Currently, the main
understanding is that the cytoskeleton determines the shape of
the body, and heavy metals can penetrate the cytoskeleton
together with food, which will lead to cell malformation
(Samir AM and El-Din AB, 2001; Le Cadre V and Debenay
JP, 2006). This understanding could be confirmed by the fact
that the heavy metal contents in the deformed tests were much
higher than those in the normal tests (El-Kahawy R et al.,
2018). The previous studies suggested that Cu was better
absorbed in foraminiferal tests than Cr, Zn, and Pb (Samir
AM and El-Din AB, 2001; Frontalini F et al., 2009). Hg is a
toxic metal and has shown a strong ecotoxicological effect on

foraminifera according to Frontalini F et al. (2017). Loushan
River Estuary was the most seriously polluted area as well as
had the highest FMI and FAI. Since the concentrations of Cu,
Pb, Zn, Cr, Hg, As exceed ERL and Pb, Cr, Hg exceed ERM
in Loushan River Estuary, the excessive heavy metal
concentrations are supposed to be the main factor influencing
the morphology of benthic foraminifera. Although deformities
were often caused by a series of contamination in the modern
environment (Alve E, 1995), there were still a small number
(1%—2%) of deformed tests in the non-polluted area (Stouff V
et al., 1999; Morvan J et al., 2004). However, FAI of all the
samples in Loushan River Estuary are nearly above 20%,
which is often considered to be affected by pollutants (Yanko
V et al.,, 1998; Coccioni R et al., 2009; Martins V et al.,
2010).
The relative abundance of deformities also shows an
obvious difference between Cluster A and Cluster B (Fig. 9).
FAI and FMI in Cluster B are much lower than those of
Cluster A which reveals the foraminifera can quickly and
obviously respond to the contamination. The main species of
deformities in Cluster A is Q. bellatula, while A. beccarii and
E. magellanicum are the dominant species of deformities in
Cluster B. Q. bellatula was most likely to generate
deformities compared with the other species which could be
regarded as the tolerant species. Therefore, Q. bellatula is
supposed to have strong resistance to most trace elements and
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organic matters in this study. Ammonia and Elphidium have
been recognized as the tolerant species in previous studies
(Zhu XD, 1994; Li T et al., 2014, 2015; Frontalini F et al.,
2009, 2017). In this study, 4. beccarri and E. magellanicum
also show resistance to heavy metal contamination in Licun
and Haipo River Estuaries and coastal areas of the eastern
Jiaozhou Bay.

6. Conclusion

This study revealed that the three estuaries and the
adjacent coastal zone of Jiaozhou Bay were seriously
contaminated and faced with great ecological risks. Cu, Pb,
Cr, Hg, Zn, As had low to median ecological risks in the
study area and were mostly concentrated in Loushan River
Estuary. The construction of the Jiaozhou Bay Bridge
weakened the capacity of water exchange of the bay, resulting
in pollutants concentrated in the northeast, which would
further threaten the growth and reproduction of benthic
foraminifera. Affected by the serious pollution, the abundance
and species of the benthic foraminifera were lowest in
Loushan River Estuary. Moreover, the distribution of total
individuals and deformities in Loushan River Estuary were
different from the other two estuaries and the adjacent coastal
zone which was supposed to be influenced by the changing
tidal current and residual current due to the bridge blockage.
In this study, the authors suggested the construction of the
Jiaozhou Bay Bridge aggravated the destruction of the
ecological environment of the estuary in the northeastern bay.
A series of suggestions are given according to this research:
(1) The capacity of sewage treatment at the outlet of the
northeastern part of the Jiaozhou Bay should be improved;
(2) it should be paying attention to the ecological environment
of estuaries in northeastern Jiaozhou Bay; (3) benthic
foraminifers are sensitive to environmental pollution and
quickly respond to environmental changs, hence need to be
used in evaluating ecological quality in the future.
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