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Many landslide disasters, which tend to result in significant damage, are caused by typhoon-triggered
rainstorms. In this case, it is very important to study the dynamic characteristics of the hydrological
response of landslide bodies since it enables the early warning and prediction of landslide disasters in
typhoon periods. To investigate the dynamic mechanisms of groundwater in a landslide body under
typhoon-triggered rainstorm conditions, the authors selected the landslide occurring in Zhonglin Village,

Keywords: ) Wencheng County, China (also referred to as Zhonglin Village landslide) as a case study. The transient
EZ:;;?;’:“ggmd rainstorm seepage field characteristics of groundwater in the landslide body were simulated with two different
Seepage rainfall models by using the finite element method (FEM). The research results show that the impact of

typhoon-triggered rainstorms on landslides can be divided into three stages: (i) Rapid rise of groundwater

eolog ering level; (ii) infiltration of groundwater from the surface to deeper level, and (iii) surface runoff erosion.
Geological disaster survey engincering Moreover, the infiltration rate of groundwater in the landslide body is mainly affected by the intensity of
Zhejiang Province . . . . . . .
China typhoon-induced rainfall. It can be deduced that higher rainfall intensity leads to a greater potential
difference and a higher infiltration rate. The rainfall intensity also determines the development mode of
landslide deformation and destruction.

Hydrological response
Hydrogeological survey engineering
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1. Introduction kind of the typhoon-induced geological disasters, landslides
have received much attention of Chinese and overseas
researchers because of their frequency and scale and the
serious damage they cause (Han J, 2012; Chen X et al., 2007;
Lou WP et al., 2006). The occurrence of landslides has been
shown by research and data to be closely related to torrential
rain associated with typhoons. Therefore, typhoon-triggered

rainfall serves as a key factor in inducing landslides (Chen

Typhoons have caused a large number of geological
disasters and serious destruction (Chen GP, 2011). For
example, Typhoon No. 19 in 1992 led to large landslides in
Lingkou Village, Xidian Town, Ninghai County, Zhejiang
Province, destroying the 272 houses of 48 households. In
2004, Typhoon No. 14 (Yunna) triggered 21 geological

disasters in Yueqing, Zhejiang Province, leaving 42 people
dead and 288 houses collapsed (excluding damaged houses).
In 2005, Typhoon Taili caused 14 landslides and 6 mudslides
in Wencheng County, Wenzhou City, killing 17 people and
leading to economic loss of about 20 x10® RMB (Han J,
2012). In 2015, Typhoon No. 13 (Suidiluo) led to 204
geological disasters in Wenzhou, causing the death of five
people and economic loss of about 28.04 x10® RMB. As one
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GP, 2011; Han J, 2012).

Based on a comparison and analysis of 195 landslides
induced by 11 typhoons in Wenzhou City from 2004 to 2009,
some researchers found that the distribution of landslide
disasters were consistent with the range of typhoon-triggered
rainstorms (Chen GP, 2011; Han J, 2012). These landslides
mainly occurred in the areas where process rainfall was more
than 200 mm or interval rainfall was more than 100 mm. They
synchronized with the typhoon-triggered
rainstorms without obvious hysteresis phenomena (Chen X et
al., 2007). The typhoon-triggered rainstorms mainly affect the
landslide slope stability through slope erosion and seepage

are roughly
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action (Zhou CB et al., 2009; Li MB et al., 2019), both of
which cause the increase in the shear stress of the sliding
surface, and thus the shear strength decreases (Zhang CY et
al., 2019; Tang MG et al., 2019). Some part of the runoff
generated from typhoon-triggered rainstorm causes erosion of
the slopes and slope foot and changes the slope structure
(Chen GP, 2011; Liu LL et al., 2008), while other parts of the
runoff saturate the rock mass through seepage, significantly
increasing the saturation. This increases the dynamic
hydrostatic pressure and thereby reduces the shear strength of
the rock and soil. It is a difficult research problem to
determine the coupling between the runoff on the typhoon-
triggered landslide slope and unsaturated seepage (Liu LL et
al., 2008; Tan JM et al., 2018; Tang MG et al., 2019; Yin YP
etal., 2017).

The coupling is important as it affects both the dynamic
characteristics and regularity of hydrological response of
landslides and also serves as the key to the assessment of
slope stability and early warning and prediction of landslides
(Li MB et al., 2019; Xiao SC et al., 2018; Yan YJ et al.,
2019).

The landslides induced by typhoon-triggered rainstorms
share similar formation mechanism with the ones caused by

general rainstorms (Fig. 1); however, the two kinds of
landslides exhibit obviously different hydrological response
characteristics owing to the long duration, intensity, and
concentration of typhoon-triggered rainstorms (Chen GP,
2011; Qiao YX et al., 2009). In this paper, Zhonglin Village
Landslide is selected as a case study to simulate different
typhoon-triggered rainfall conditions and to study the
dynamic characteristics of groundwater seepage of landslides.
This study will enable a better understanding of the dynamic
mechanisms of groundwater in the unsaturated rock mass
under typhoon-triggered rainstorm conditions and will assist
in the treatment and early warning and prediction of typhoon-
induced landslides in the southeastern coastal areas of China.

2. Key characteristics of the Zhonglin Village landslide

The Zhonglin Village landslide is located to the north of
Zhonglin Bridge along Provincial Highway No. 56,
Wencheng County, Wenzhou City, Zhejiang Province. The
slope section where the landslide occurred features a
maximum elevation of 251 m at the peak position, a minimum
elevation of 198 m at the foot, and a vertical height of
approximately 58 m. The parameters of horizontal projection

Fig. 1. Photos of landslides induced by typhoon-triggered rainstorms. a—a landslide in Shuangxikou Village, Fengwen Town, Taishun County,
Wenzhou City, Zhejiang Province; b—a landslide in Zhaoan City, Fujian Province; c—a landslide in Wuping City, Fujian Province; d—a landslide

in Taishi Village, Taishun County, Wenzhou City, Zhejiang Province.
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of the slope section are as follows: length=107 m, width=47 m,
thickness=4-8 m, volume=24000 m>. The main sliding direction
is 85°. The slope is gentle in the upper parts and steep in the
lower parts, with a gradient of 31° —24°. Nine scarps
developed.

The landslide is formed in Cretaceous strata. The landslide
body consists of highly or completely weathered rock masses
with spallation and fragmentation structures. As revealed
from drilling exploration, the landslide body can be divided
into four layers from top to bottom (Fig. 2) as follows. (1) Loose
residual slope layer (Q!fdl): Yellow and brownish-yellow,
comprised of breccia-bearing silty clay, 0.3 —2.4 m thick,
loose, and plastic. (2) Cretaceous layer (K;c): Brownish-
yellow and grayish-brown, consisting of completely
weathered tuff, 2.4—4.9 m thick. (3) Cretaceous layer (K;c):
Grayish-yellow and grayish-brown, comprised of highly
weathered tuff, 3—5.8 m thick. (4) Cretaceous layer (K;c):
Light grey and grayish-brown, moderately weathered,
comprised of tuff. The sliding surface is a highly weathered
layer and the sliding zone consists of gravelly soil.

The Zhonglin Village landslide was reactivated mainly by
a rainstorm that occurred on June 19th, 2012 and was
associated with Typhoon No. 5 (Taili). Heavy rains of more
than 200 mm/d struck Wencheng County (Xie JM et al., 2003;
Wang JY et al., 2019). It changed the hydrogeological
conditions of the landslide body and led to the formation of
multiple tensile and shear cracks in the slope and significant
deformation. Therefore, the study on the dynamic
characteristics of the hydrological response of the landslide
under typhoon-triggered rainstorm conditions is the key to the
assessment of the slope stability.

3. Numerical simulation of the saturated - unsaturated
seepage field of the landslide under typhoon-triggered
rainstorm conditions

3.1. Saturated and unsaturated seepage model of the landslide

The soil in a landslide body changes from unsaturated to
saturated state as the groundwater level increases owing to
rainfall infiltration. On the other hand, water movement on the
surface of unsaturated soil is related to that in the saturated
soil. To unify the two types of water movement means to
address the so-called saturated and unsaturated seepage
problem. Using hydraulic head / as the dependent variable,
the anisotropic two-dimensional Richards saturated-
unsaturated seepage control equation is as follows (Xiao SC et
al., 2018; Hu XB et al., 2019; Yu GQ et al., 2015; Song DY,
2018):

0, oh

0,0k, 0, 0k Oh
dx “0x  Ox dy

mwpwga (1)

where k, and k, are the horizontal and vertical saturated
permeability coefficients (m/s), respectively; p is the density
of water; g is the gravitational acceleration; m,, is specific

water capacity, which is defined as the negative value of the
partial derivative of the volumetric water content 6 with
respect to the matrix suction (p,—p,,):

owo

mw =~ <
d(pa—pw)

@
where p, and p,, are the pore air pressure and pore water
pressure, respectively.

3.2. Engineering geological model for seepage simulation

In this paper, the authors established a seepage model by
using SEEP/W and the Geo-slope software (Fig. 3) based on
the main landslide section (Fig. 2).

The parameters in the model were obtained through tests
and experience. The physical and mechanical parameters of
each layer including permeability coefficients are shown in
Table 1.

The boundary conditions of the model include: The
boundary of the fixed head is below the groundwater level of
the left and right sides in the model; the boundary of zero
discharge is above the groundwater level, and the slope is the
infiltration boundary condition (Li YY et al., 2020).

3.3. Simulation conditions

Most daily precipitation caused by typhoons has been
shown by previous studies to have a maximum of less than
200 mm in the southeastern coastal areas; it is attributable to
the formation of approximately 88.4% of the typhoon events
(Qiu WY et al, 2014; Figs. 3, 4). The critical daily
precipitation required to trigger landslides is about 200 mm
according to a recent statistical survey of landslide disasters
induced by typhoons (Xie JM et al., 2003; Zhang SX et al.,
2017; Zhang CY et al., 2019). For instance, a landslide
disaster occurred after 195 mm of rainfall in 24 h on July 18,
2005 during Typhoon Haitang; a landslide disaster occurred
after 290 mm of rainfall in 24 h on September 1, 2005 during
Typhoon Taili. Therefore, in this paper, 200 mm/d is taken as
the critical rainfall standard value that induces landslides to
analyze the dynamic characteristics of hydrological changes
in the landslide under typhoon-triggered rainstorm conditions.
Transient seepage characteristics of the landslide are
considered in the cases of successively increasing rainfall of
200 mm in 24 h and constant-intensity rainfall of 200 mm in
24 h (Iverson RM, 2000; Zhang W et al., 2019; Zhang M et
al., 2019). The simulation duration was 24 h.

4. Numerical simulation

4.1. Water seepage field in the landslide caused by a
constant-intensity rainstorm

Fig. 5 shows the distribution of pore water pressure in the
landslide slope during a constant-intensity rainstorm of 200
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Stratigraphic code (®1, @1: Heavily weathered layer; mo
(32, @2: Strongly weathered layer;
33, @3: Moderate weathered layer)

Fig. 2. Geological section of the Zhonglin Village landslide.
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Fig. 3. Simulation model of layers in Zhonglin Village landslide.

Table 1. Physical and mechanical parameters used in the

model.

Layer parameters ~ Breccia- Completely ~ Strongly Moderately
bearing weathered ~ weathered weathered
silty clay layer layer layer

Natural unit weight 18.7 19.3 20 25

v I(kN/m®)

Saturated 30 28 26 25

volumetric

moisture content

/%

Saturated 0.05 0.216 0.16 0.1

permeability

coefficient/(m/h)

Cohesive force/c 20.1 19 21 27

(kPa)

Internal friction 21.8 20 23 26

angle/p (°)

mm/d in 24 h. The seepage area is presented in blue color.
The simulation results in 4.8 h show that the groundwater
level increased significantly, while the infiltration decreased
gradually. This led to a decrease in the rise in groundwater
level until a balance was reached (Figs. 5a, b), when the rate
of the groundwater level rise stabilized at 1.04 m/h. After 4.8
h, heavy rainfall led to an accumulation of runoff. As a result,

the topsoil was saturated; a seepage face appeared in the
shallow soil and then migrated slowly downwards (Fig. 5c),
and differential infiltration occurred in some areas (Figs. 6d,
5e). After 24 h, the pore water pressure distribution shown in
Fig. 5f. The hydrological response characteristics by this time
are as follows. (1) The seepage face remained at the interface
between the completely weathered soil (the second layer) and
the highly weathered soil (the third layer). (2) The rock-soil
above the seepage face was saturated. (3) The groundwater
infiltration rate was 0.26 m/h. (4) All rainfall was converted to
surface runoff; the soil erosion rate was increased. (5) The
anti-shear performance of the rock-soil decreased.
Consequently, a slide surface appeared at the interface
between the completely weathered and highly weathered soil
layer.

4.2. Groundwater seepage field in the landslide caused by
successively increasing rainfall

For the sake of comparison, the authors changed the
rainfall model and introduced five successive 4.8 h rainfall
intensities: 10 mm/d, 25 mm/d, 50 mm/d, 100 mm/d, and 200
mm/d (Fig. 6).

Fig. 7 shows the distribution of pore water pressure in the
landslide slope during a successively increasing rainfall of
200 mm/d in 24 h. The seepage area is presented in blue
color.

In this case, the groundwater level rose to its peak at 4.8 h
and subsequently remained steady —similar to the case of
constant-intensity rainfall according to the comparison of the
groundwater level in Fig. 7 with that in Fig. 5. The silty clay
layer on the landslide surface gradually developed into a
seepage face as the rainfall intensity successively increased.
Then the seepage face slowly migrated downwards at a rate
less than that in the constant-intensity rainfall model. After
19.2 h when the rainfall reached 100 mm/d, the seepage face
stabilized at the interface between the silty clay surface layer
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and the completely weathered layer; the slide surface formed
in this case was shallower than that formed in the case of

constant-intensity rainfall; the groundwater infiltration rate

was 0.16 m/h, and the all the rainfall was converted into
surface runoff after 19.2 h. The water-induced softening and
erosion of soil caused a shovel-shaped slope to develop.

5. Conclusions

The following conclusions can be drawn from this study:

(i) The influence of typhoon-triggered rainstorms on
landslides can be divided into three main stages in the model.
In the first stage, the groundwater level rose quickly and then
stabilized within 4.8 h; the rock-soil beneath the groundwater
level became saturated, and the water pressure continued to
increase. In the second stage, surface runoff started to occur; a
seepage face formed in shallow soil and then migrated
downwards; the seepage face remained steady within 19-24 h;
the rock-soil above the seepage face softened, and the anti-
shear performance decreased. In the third stage, all the rainfall
was converted into runoff; the surface rock-soil was strongly
eroded, and the soil erosion rate increased.

(i1) In both of the aforementioned cases (constant-intensity
rainfall and successively increasing rainfall), groundwater
levels rose quickly. The rain infiltrated quickly and the water
level rose rapidly within a short period of time (4.8 h) as the
unsaturated soil has a high storage capacity and very large

(d) 144 h

(&) 192h

44

(H24h

|

Fig. 5. Distribution of pore water pressure in the slope at different times during a constant-intensity rainstorm of 200 mm/d.


http://dx.doi.org/10.31035/cg2020028

460 Zhang et al. / China Geology 3 (2020) 455—461

25

S

20!

(=]
>

15

S

10

S

Rainfall/(mm/d)

5

S

(=]

5 10 15 20 25
Time/h

Fig. 6. Periods of successively increasing precipitation.

matrix suction. Then the groundwater level became stable
owing to the increase in runoff.

(iii) The groundwater infiltration rate in a landslide is
mainly affected by the intensity of typhoon-triggered rainfall:
The higher the rainfall intensity, the larger the potential
difference and the higher the infiltration rate. The simulation
of Zhonglin Village landslide shows that constant-intensity

(@) 0h

4

(b)4.8h 10 mm/d

4

(€)9.6 h 25 mm/d

——

rainfall caused greater changes than the rainfall with
successively increasing intensities, and constant-intensity
rainfall generated deeper seepage face than successively
increasing rainfall. Furthermore, the seepage face in the case
of constant-intensity rainfall remained near the interface
between the completely weathered layer and the highly
weathered layer, while the seepage face in the case of
successively increasing rainfall remained near the interface
between the silty clay layer and the completely weathered
layer.

(iv) The deformation mode of landslides is closely related
to the intensity and duration of typhoon-triggered rainstorm.
Constant-intensity rainfall is liable to induce deep landslides,
with a burial depth of slip surface of greater than 2 m. In
contrast, successively increasing rainfall tends to produce
shovel-shaped slopes, whose burial depth is less than 2 m.
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Fig. 7. Distribution of pore water pressure in the slope at different times in the case of successively increasing rainfall.
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