刘贵磊, 许春雪, 陈宗定,等. 氟化氢铵快速分解 – 电感耦合等离子体质谱法测定含刚玉铝土矿中锂镓锆稀土等痕量元素 [J]. 岩矿测试,2020,39(5):670 – 681.

LIU Gui – lei, XU Chun – xue, CHEN Zong – ding, et al. Determination of Lithium, Gallium, Zirconium, Rare Earth Elements and Other Trace Elements in Corundum – bearing Bauxite by Inductively Coupled Plasma – Mass Spectrometry with Rapid Decomposition of Ammonium Bifluoride[J]. Rock and Mineral Analysis,2020,39(5):670–681.

[DOI: 10.15898/j. cnki. 11 – 2131/td. 202003120031]

# 氟化氢铵快速分解 – 电感耦合等离子体质谱法测定含刚玉 铝土矿中锂镓锆稀土等痕量元素

刘贵磊,许春雪,陈宗定,温宏利 (国家地质实验测试中心,北京100037)

摘要:铝土矿中常伴有锂、镓、锆、稀土等有用组分,完全提取并准确测定其含量对于铝土矿资源综合评价和 综合利用具有重要意义。然而铝土矿中常常含有少量刚玉,常规的四酸、五酸和封闭压力酸溶法对其分解不 完全,导致测定结果偏低。本文采用氟化氢铵作熔剂,高温下在旋盖 PFA 小瓶中分解样品,通过在熔样过程 中使用少量硫酸,对不同熔矿温度、消解时间及试剂用量等因素详细考察,确定了最佳熔矿条件[200℃,3h, 试样比4:1(称样量 50mg)],建立了氟化氢铵分解-电感耦合等离子体质谱法测定含刚玉铝土矿中 37 种 痕量元素的分析方法。本方法能快速、有效地分解含刚玉铝土矿,经三种铝土矿国家标准物质 GBW07177、 GBW07181 和 GBW07182 验证,并与四酸、五酸和封闭压力酸溶法的测定结果对比,三种标准物质中 Li、Ga、 Sr、Zr、Pb 等9 种元素的回收率分别在 95.0% ~115.0%、90.0% ~110.0% 和 90.0% ~110.0% 之间,测定值 与认定值相符。同时,本方法实现了铝土矿(Al<sub>2</sub>O<sub>3</sub>含量在 42.97% ~90.36% 之间)中 Al、Ti、P 等主量元素的 精确分析,进一步验证了其用来测定铝土矿中痕量元素的准确性。方法检出限为 0.002 ~0.43 µg/g,与传统 硝酸 – 氢氟酸密闭消解法的检出限(0.000 ~0.48 µg/g)基本相当,精密度在 1.14% ~8.84% 之间,能够满足 铝土矿中痕量元素的分析要求。

关键词:氟化氢铵;快速分解;电感耦合等离子体质谱法;含刚玉铝土矿;痕量元素

要点:

(1) 以氟化氢铵为熔剂,解决了四酸、五酸和封闭压力酸溶法对含刚玉铝土矿分解不完全的问题。

(2)确定了氟化氢铵分解含刚玉铝土矿的最佳温度、时间和试样比。

(3) 本研究适用于铝土矿特别是高铝及含刚玉铝土矿的痕量元素分析。

中图分类号: P578.496; 0657.63 文献标识码: A

铝土矿是生产金属铝的最佳原料,同时其矿物 中一般含有锂、镓、钒、铌、钽、钛、钪、稀土等有用组 分<sup>[1-2]</sup>。其中,锂作为中国未来战略性新兴产业发 展不可或缺的关键矿产,铝土矿型锂是沉积型锂资 源的重要而巨大的来源,查明铝土矿中锂的赋存状 态和分布规律有利于找矿预测和综合利用<sup>[3-4]</sup>;镓 的离子半径与铝相近,常与铝共生,铝土矿中镓含量 通常在 0.001% ~0.01% 之间,是提炼镓的主要来 源之一<sup>[5-6]</sup>;钒、铌、钽、钛和钪等微量元素是良好的 地球化学指示剂<sup>[7-8]</sup>,可用来推测铝土矿的成矿环 境;稀土元素(REE)地球化学是研究铝土矿成矿机 制的常用手段<sup>[9-10]</sup>。因此,准确测定铝土矿中痕量

收稿日期: 2020-03-12;修回日期: 2020-04-08;接受日期: 2020-05-13

基金项目: 中国地质调查局地质调查项目(DD20190323, DD20190475); 国家自然科学基金项目(21601041)

作者简介:刘贵磊,博士,助理研究员,主要从事岩矿测试分析和标准化工作。E-mail: liuguilei2008@163.com。

元素的含量,对于铝土矿资源综合评价、研究矿床远 景和综合利用具有重要意义。

铝土矿中痕量元素的常规分析方法多采用滴定 法<sup>[11]</sup>、分光光度法<sup>[12]</sup>、原子吸收光谱法(AAS)<sup>[13]</sup>、 X射线荧光光谱法(XRF)<sup>[14]</sup>和电感耦合等离子体 发射光谱法(ICP - OES)<sup>[15]</sup>等。然而,滴定法和分 光光度法测定周期长、过程复杂,AAS 不能多元素 同时分析, XRF和ICP-OES灵敏度较低, 需进行预 浓缩或离子交换分离。电感耦合等离子体质谱法 (ICP-MS)由于具有高灵敏度、低检出限以及多元 素同时测定的优点,目前已发展为痕量元素分析的 常用手段。完全消解是实现 ICP - MS 再现和精确 分析铝土矿中痕量元素的先决条件<sup>[16-17]</sup>。然而,我 国的铝土矿资源以一水硬铝石([AlO(OH)])为主, 且常常含有少量刚玉(Al<sub>2</sub>O<sub>3</sub>),属于比较难处理的 样品<sup>[18-20]</sup>,完成对痕量元素如稀土元素和高场强元 素(HFSE:Zr、Nb、Hf、Ta、Th和U等)的完全提取是 非常困难的[21-24]。目前,铝土矿样品的分解方法一 般有混合酸溶解法和碱熔法<sup>[11,25-26]</sup>。常用的四酸 溶解法,单独氢氧化钠、氢氧化钾或碳酸钠熔融法对 含刚玉铝土矿分解不完全<sup>[20,25]</sup>;偏硼酸锂、硼砂-碳酸钠、过氧化钠或氢氧化钠 - 过氧化钠熔融法虽 然可以解决此类铝土矿分解不完全的问题[18-19,27], 但由于受高含量的程序空白及高总盐含量(TDS)的 影响<sup>[28]</sup>,较少应用于痕量元素分析。因此,探寻新 的溶(熔)矿方法,实现含刚玉铝土矿中痕量元素的 快速、准确分析是铝土矿化学分析的一项重要工作。

氟化铵/氟化氢铵是一种固态试剂,沸点高 (260℃/239.5℃),相比于氢氟酸,具有更好的安全 性及更高的分解温度。此外,超纯氟化铵/氟化氢铵 可通过 PFA 辅助蒸发(sub - boiling)提纯或购买获 得,用于 ICP - MS 测定时不会引入任何干扰组分。 试剂本身也可通过加热分解而完全挥发,从而使最 后提取液中的 TDS 含量较低。这些特点使氟化铵 和氟化氢铵作为一种地质样品分解试剂引起了国内 外学者的关注<sup>[29-31]</sup>。1989 年 Ayranci<sup>[32]</sup>以氟化铵 和硫酸铵为熔剂,建立了一种快速的氧化锆分解方 法。2008 年 Mariet 等[33] 研究发现硝酸 - 双氧水 -氟化铵与硝酸-氢氟酸-高氯酸对玄武岩和土壤具 有相似的敞开酸溶消解能力。2010 年 Hu 等<sup>[34]</sup>利 用氟化铵和硝酸,在封闭压力条件下实现了对镁铁 质和长英矿物等火成岩的有效分解。2012 年 Zhang 等<sup>[35]</sup>以氟化氢铵为熔剂,在旋盖 PFA 瓶中实现了 对火成岩及页岩等岩石高效、简单的分解和多元素 分析。2013 年 Hu 等<sup>[36]</sup>进一步在 PFA 瓶中系统研 究了氟化铵对长英矿物 GSP - 2 的分解能力,同时 对一系列岩石矿物标准物质中的痕量元素进行了准 确测定。通过在样品分解过程中引入氟化铵或氟化 氢铵,不仅避免了高腐蚀性和毒性的氢氟酸的使用, 而且提高了分解效率。然而,这些现象和结论大多 是对于硅酸盐矿物得到的,如何避免生成难溶性氟 化物沉淀,进一步提高氟化铵/氟化氢铵的分解能 力,实现对不同难溶矿物的有效分解,是这一领域亟 待解决的问题。

最近,Zhang等<sup>[37]</sup>研究发现,单纯使用氟化铵或 氟化氢铵分解铝土矿样品,虽然可以实现除钠以外 其他主量元素的准确测定,但会伴有沉淀和半透明 凝胶生成,造成 Zn、Sr、Y、Th 和 REE 元素的丢失。 通过在熔样过程中加入高氯酸,可以解决上述问题, 并实现了痕量元素的准确测定。然而,该方法的分 解温度较高(240℃),超出 PFA 小瓶稳定、持久的耐 受温度(~230℃)<sup>[35]</sup>,且没有对最佳熔矿条件进行 详细探索。此外,氟化氢铵和氟化铵具有相似的分 解能力,且氟化氢铵熔点(124.6℃)低于氟化铵熔 点(170℃),更易于提纯。基于此,本研究采用氟化 氢铵作熔剂,通过在熔样过程中使用少量的硫酸,高 温下在 PFA 小瓶(低压)中分解含刚玉铝土矿样品, 对不同熔矿温度、消解时间及试剂用量等因素进行 了详细考察,确定了最佳熔样条件,并与四酸、五酸 和封闭压力酸溶法的测定结果对比,应用ICP-MS 实现了含刚玉铝土矿中37种痕量元素的快速、准确 分析。为铝土矿资源综合评价和综合利用提供了技 术支撑。

## 1 实验部分

# 1.1 样品描述

据标准物质证书描述,国家一级标准物质 GBW07177~GBW07182的候选物样品采自我国主 要铝土矿产地山西和贵州,研制单位为国家地质实 验测试中心。其中 GBW07181和 GBW07182 经岩 矿鉴定含有刚玉<sup>[18]</sup>。

## 1.2 仪器及工作条件

NexION300D型电感耦合等离子体质谱仪 (ICP-MS,美国PerkinElmer公司);Optima 8300型 电感耦合等离子体发射光谱仪(ICP-OES,美国 PerkinElmer公司)。

ICP-MS 仪器工作条件:功率 1500W,冷却气 (Ar)流量 18.0L/min,辅助气(Ar)流量 1.2L/min,

雾化气(Ar)流量 0.94L/min,采样锥(Ni)孔径 1.0mm,截取锥(Ni)孔径 0.9mm,超锥(Al)孔径 1.0mm,采样深度 12mm,测量方式为跳峰,扫描次 数为 20 次,停留时间 13ms。

ICP - OES 仪器工作条件:射频功率 1300W,冷 却气流量 15.0L/min,辅助气流量 0.6L/min,进样速 率 1.5L/min,进样时间 25s;垂直观测高度 15mm;重 复测量次数为 3 次。

DHG-9145A型电热恒温鼓风干燥箱(上海齐 欣科学仪器有限公司),EG20A型数显控温电热板 (美国 LabTech 公司)。

## 1.3 主要试剂

优级纯氟化氢铵试剂(≥98.5%,美国 Sigma – Alorich 公司),分析纯氟化氢铵试剂(≥98%,国药 集团化学试剂有限公司),BV – Ⅲ级盐酸(北京化学 试剂研究所),BV – Ⅲ级硝酸、氢氟酸(美国 Fisher Chemical 公司),优级纯高氯酸(国药集团化学试剂 有限公司),MOS 级硫酸(无锡吴越化工有限公司), Milli – Q 超纯水(电阻率大于 18MΩ・cm)。

#### 1.4 实验方法

方法一:硝酸 - 氢氟酸封闭压力酸溶。称取 0.025g样品(精确至0.01mg)于聚四氟乙烯内罐中, 加入1.5mL氢氟酸、0.5mL硝酸,加盖,装入封闭溶 样器的外套中,于烘箱中195℃保温36h。冷却后开 盖,取出聚四氟乙烯内罐于电热板上165℃蒸发至 干。加入0.5mL硝酸蒸发至干,此步骤再重复一 次。加入2.5mL50%的硝酸,加盖,再次装入封闭 溶样器的外套中,于烘箱中150℃保温5h,取出冷 却,把溶液转移并以重量法用超纯水稀释至25g, 摇匀,上机待测。

方法二:盐酸 - 硝酸 - 氢氟酸 - 高氯酸(四酸) 敞开酸溶。称取 0.1000g 样品(精确至 0.1mg)于聚 四氟乙烯坩埚中,加入 3mL 盐酸、2mL 硝酸、3mL 氢 氟酸、1mL 高氯酸,盖上坩埚盖,于电热板上 120℃ 分解 2h。洗净坩埚盖并取下,升温至 150℃ 继续分 解 2h,然后升温至 180℃ 蒸至高氯酸烟冒尽。用 50% 的盐酸冲洗坩埚壁,加热蒸发至干,此步骤再重 复一次。取下冷却,加入 5mL 50% 的逆王水溶液, 盖上坩埚盖,于电热板上 120℃溶解盐类 30min,取 下冷却后,把溶液转移并以重量法用超纯水稀释至 25g,摇勾备用。分取制备的溶液 2.5mL,稀释至 10mL 体积,摇勾,上机待测。

方法三:盐酸 - 硝酸 - 氢氟酸 - 高氯酸 - 硫酸 (五酸)敞开酸溶。称取 0.1000g 样品(精确至 - 672 -- 0.1mg) 于聚四氟乙烯坩埚中, 加入 3mL 盐酸、2mL 硝酸、3mL 氢氟酸、1mL 高氯酸、0.5mL 硫酸, 盖上坩 埚盖, 于电热板上 120℃分解 2h。洗净坩埚盖并取 下, 升温至 150℃继续分解 2h, 然后升温至 180℃蒸 至高氯酸烟冒尽。用 50% 的盐酸冲洗坩埚壁, 加热 蒸发至干, 此步骤再重复一次。取下冷却, 加入 5mL 50% 的逆王水溶液, 盖上坩埚盖, 于电热板上 120℃ 溶解盐类 30min, 取下冷却后, 把溶液转移并以重量 法用超纯水稀释至 25g, 摇匀备用。分取制备的溶 液 2.5mL, 稀释至 10mL 体积, 摇匀, 上机待测。

方法四:氟化氢铵分解。①准确称取 50mg 样 品(粒径 < 74 μm)和 200mg 氟化氢铵粉末于 15mL 旋盖 PFA 瓶中,加入几滴水湿润;②将瓶封盖,置于 电烘箱中 200℃下加热 3h;③取出、冷却后,加入 2.0mL硝酸和 0.5mL 硫酸,于电热板上稳缓升温, 180℃下蒸发至近干;④不加硫酸,步骤③重复一次; ⑤最后的熔融物用 1.5mL 硝酸和 1.5mL 超纯水提 取,并于 120℃下加热 6h,得到澄清溶液;⑥最终的 溶液被转移到 50mL 聚乙烯瓶中,并以重量法用超 纯水稀释至 50g。试剂空白溶液以上述同样的步骤 制备。分别利用 ICP – MS 和 ICP – OES 对痕量元素 和主量元素进行测定。

# 2 结果与讨论

## 2.1 氟化氢铵分解铝土矿最佳条件选择

2.1.1 熔矿温度的选择

温度是样品消解的关键因素之一。为了确定氟 化氢铵分解铝土矿的最佳温度,本实验选择 GBW07177 (Al, O, 认定值71.06%)、GBW07178 (Al<sub>2</sub>O<sub>3</sub>认定值54.94%)和GBW07181(Al<sub>2</sub>O<sub>3</sub>认定值 90.36%) 三种铝土矿国家标准物质, 在不同温度下 (170~230℃)用 200mg 氟化氢铵分解 50mg 样品, 并对其中具有认定值的11种次痕量元素(Li、Ti、V、 Cr、Mn、Cu、Zn、Ga、Sr、Zr、Pb)进行了测定,其中元素 Li和 Ga及相对难于提取的 Sr和 Zr的回收率如图1 所示。元素 Li 和 Ga 在所有的分解条件下基本完全 回收(回收率均在 90%~110% 之间), 而 Sr 和 Zr (GBW07177)则随着温度的不断升高,其回收率不 断增加,直至200℃之后,也可实现完全回收。氟化 氢铵的沸点约239.5℃,当消解温度高于其沸点时, 氟化氢铵将从旋盖 PFA 小瓶中迅速挥发溢出,这将 直接减弱它的消解能力<sup>[36]</sup>。此外,旋盖 PFA 小瓶 可以稳定、持久的耐受温度在 230℃ 左右<sup>[35]</sup>。因 此,为了保证铝土矿样品的完全消解,同时考虑旋盖



图 1 不同熔矿温度下铝土矿标准物质(GBW07177、GBW07178、GBW07181)中 Li、Ga、Sr、Zr 的回收率

Fig. 1 Recovery of Li, Ga, Sr and Zr in bauxite standard materials (GBW07177, GBW07178, GBW07181) at different dissolution temperatures

PFA 小瓶的耐受温度,我们选择的最佳熔矿温度为 200℃。相较于 Zhang 等<sup>[37]</sup>报道的高氯酸 - 氟化氢 铵分解法的熔矿温度(240℃)低 40℃,且低于 PFA 小瓶可以稳定、持久操作的耐受温度。

2.1.2 消解时间的选择

时间也是决定样品消解效果的主要因素。为了 确定氟化氢铵分解铝土矿的最佳时间,不同时间下 (0.5~12h)用 200mg 氟化氢铵分解 50mg GBW07177、GBW07178和 GBW07181,并对其中具 有认定值的11种次痕量元素进行了测定,其中元素 Li、Ga、Sr和Zr的回收率如图2所示。元素Li在所 有的分解条件下基本完全回收(回收率均在90%~ 110%之间),GBW07177中元素 Sr、Zr和 GBW07181 中 Sr 分解 3h 之后才可完全回收。因此,我们选择 的最佳分解时间为 3h,这比传统的高压密闭酸溶法 (1mL 硝酸 + 1mL 氢氟酸,190℃)快6 倍<sup>[17]</sup>,比 Zhang 等<sup>[37]</sup>报道的高氯酸 – 氟化氢铵分解法快 2h。 此外,氟化氢铵分解法可以在旋盖 PFA 小瓶中进 行,而不再使用高压密闭消解罐和氢氟酸,更加经 济、安全。据文献[36]报道,氟化铵分解硅酸盐矿 物的机理为 SiO<sub>2</sub> + 6NH<sub>4</sub>F→(NH<sub>4</sub>)<sub>2</sub>SiF<sub>6</sub> + 2H<sub>2</sub>O + 4NH<sub>3</sub>↑。氟化氢铵高温下可以发生分解(NH<sub>4</sub>HF<sub>2</sub> →2HF + NH<sub>3</sub>↑),三氧化二铝和过量的氟化氢反应 生成六氟合铝酸(Al<sub>2</sub>O<sub>3</sub> + 12HF→2H<sub>6</sub>AlF<sub>6</sub>)。因此,



图 2 不同消解时间下铝土矿标准物质(GBW07177、GBW07178、GBW07181)中 Li、Ga、Sr、Zr 的回收率

Fig. 2 Recovery of Li, Ga, Sr and Zr in bauxite standard materials (GBW07177, GBW07178, GBW07181) at different digestion time

我们推测,氟化氢铵分解铝土矿样品的机理是氟化 氢铵与三氧化二铝反应转化成了六氟合铝酸氨(Al<sub>2</sub>  $O_3 + 6NH_4HF_2 \rightarrow 2(NH_4)_3AlF_6 + 3H_2O)_{\odot}$ 

# 2.1.3 试样比的选择

图 3 为不同试样比条件下,50~800mg 氟化氢 铵分解 50~200mg GBW07177 时 11 种元素的回收 率。消解温度和时间分别为 200℃和 3h,最终的样 品稀释因数均为 1000 倍。当样品用量为 50mg 时, 氟化氢铵的用量至少为 200mg 时,才能实现 11 种 元素的完全回收(回收率均在 90%~110% 之间), 试样比达4:1之后,部分元素回收率变差,不能实 现 11 种元素的完全回收。当样品用量为 100mg 和 200mg 时,无论试样比(8:1~1:4)为多少,均不能 实现 11 种元素的完全回收。这可能是因为试剂用 量低时(小于4:1),样品分解不完全,而在特定的 熔样条件下(15mL 旋盖 PFA 瓶中),试剂或样品用 量高时,容易生成难溶性氟化物,从而使元素回收率 出现较大偏差<sup>[17-18,38]</sup>。因此,我们选择最佳的试样 比为4:1(称样 50mg)。

由上所述氟化氢铵分解铝土矿的最佳温度为 200℃,时间为3h,试样比为4:1(称样量50mg)。

2.2 分析结果验证

2.2.1 不同溶(熔)矿方法对比

选用铝土矿国家标准物质 GBW07177、 GBW07181和 GBW07182,这三种标准物质 Al 含量高,且 GBW07181和 GBW07182 经查找相关文献和岩 矿鉴定含有刚玉<sup>[18]</sup>。采用硝酸 - 氢氟酸封闭压力酸 溶(方法一)、四酸敞开酸溶(方法二)和五酸敞开酸

溶法(方法三)分解时,复溶提取后埚底均有残渣,而 氟化氢铵分解(方法四)的熔融物经提取后,瓶底无残 渣,四种溶(熔)矿方法下铝土矿中37种痕量元素的 ICP-MS分析结果见表1。可以看出,前三种方法的 测定结果较氟化氢铵分解法系统偏低,这主要是由于 一水硬铝石[AlO(OH)]和刚玉(Al,O<sub>3</sub>)相的存在使 得样品消解不完全造成的[23-24]。此外,通过与认定 值比对,其中Li、V、Cr、Cu、Zn、Ga、Sr、Zr和Pb等9种 元素,测定结果的回收率如图4所示。可以看出,前 三种方法溶样时 Cr、Ga、Pb 等元素系统偏低, 且测定 值与认定值的偏差较大,GBW07177 中的 Ga 元素回 收率分别只有 57.5%、27.5% 和 31.7%, GBW07181 中的 Cr 元素回收率分别只有 55.1%、15.1% 和 15.4%, GBW07182 中的 Pb 元素回收率分别只有 45.1%、71.5%和73.7%。而氟化氢铵熔样时的元 素测定值无系统误差,三种标准物质中9种元素回 收率分别均在 95.0% ~115.0%、90.0% ~110.0% 和90.0%~110.0%之间,说明氟化氢铵分解的熔矿 方法能够完全熔解高铝及含少量刚玉的铝土矿,实 现对其中痕量元素的准确测定。

# 2.2.2 主量元素分析结果验证

对于高铝和含刚玉相的铝土矿,实现 Al<sub>2</sub>O<sub>3</sub>的 完全分解是确保痕量元素准确分析的前提。为进一 步验证氟化氢铵分解测定的铝土矿中痕量元素的准 确性,对氟化氢铵分解的铝土矿 GBW07177 ~ GBW07182,在稀释因数为1000的情况下,利用 ICP - OES 对其主量元素进行了分析。其中 Al、Ti 和 P 为六种铝土矿标准物质中百分含量在几十到零点几



图 3 氟化氢铵分解 50~200mg 铝土矿标准物质(GBW07177)时 11 种元素的回收率

Fig. 3 Recovery of 11 elements when 50 - 200mg of bauxite standard materials (GBW07177) decomposed by ammonium bifluoride

| 表1    | 四利 | 种溶(熔)矿方法下铝土矿标准物质(GBW07177、GBW07181、GBW07182)中 37 种痕量元素的 ICP – MS 分析结果                                                 |
|-------|----|-----------------------------------------------------------------------------------------------------------------------|
| Table | 1  | ICP - MS analytical results for determination of 37 trace elements in bauxite standard materials (GBW07177, GBW07181, |
|       |    | GBW07182) by four sample dissolution (melting) methods                                                                |

| 待测<br>元素 | 认定值(μg/g)              |                 |                               | 方            | 法一(μg | /g)   | 方江    | 去二(μg | /g)          | 方法三(μg/g)    |       |              | 方法四(μg/g) |             |              |
|----------|------------------------|-----------------|-------------------------------|--------------|-------|-------|-------|-------|--------------|--------------|-------|--------------|-----------|-------------|--------------|
|          | CBW                    | CBW             | CBW                           | CBW          | CBW   | CBW   | CBW   | CBW   | CBW          | CBW          | CRW   | CBW          | CBW       | CRW         | CBW          |
|          | 07177                  | 07191           | 07192                         | 07177        | 07101 | 07192 | 07177 | 07101 | 07192        | 07177        | 07101 | 07192        | 07177     | 07191       | 07192        |
|          | 0/1//                  | 0/181           | 0/182                         | 0/1//        | 0/181 | 0/182 | 0/1// | 0/181 | 0/182        | 0/1//        | 0/181 | 0/182        | 0/1//     | 0/181       | 0/182        |
| Li       | 80.6±5.5               | $35.1 \pm 4$    | 147 ± 12                      | 51.3         | 27.5  | 120   | 79.3  | 36.8  | 151          | 82.6         | 33.6  | 140          | 90.2      | 39.0        | 162          |
| Be       |                        |                 |                               | 7.20         | 5.43  | 5.18  | 3.78  | 3.81  | 3.71         | 4.25         | 3.33  | 3.60         | 8.86      | 6.83        | 5.52         |
| Sc       | 100 27                 | /               | /                             | 6.82         | 4.05  | 5.85  | 50.3  | 45.2  | 44.8         | 51.5         | 42.1  | 42.3         | 62.5      | 48.7        | 46.6         |
| V        | 198 ± 27               | $210 \pm 26$    | $216 \pm 27$                  | 194          | 208   | 232   | 78.3  | 85.4  | 201          | 92.5         | 156   | 191          | 206       | 222         | 220          |
| Cr       | $215 \pm 7$            | $267 \pm 20$    | $233 \pm 17$                  | 5 22         | 147   | 124   | 15.5  | 40.3  | /5.8         | 86.2         | 41.0  | 74.9         | 231       | 264         | 223          |
| Co<br>N: |                        | ,               | /                             | 5.32<br>21.1 | 0.44  | 1.70  | 5.40  | 0.65  | 2.27         | 5.55<br>26.2 | 0.68  | 2.19         | 0.09      | 1.08        | 2.25         |
| N1<br>Cu | 20 6 . 2 2             | 10 5 . 2 9      | 24 8 . 2 4                    | 22 0         | 0.0   | 22.4  | 25.4  | 2.1   | 19.0         | 20.5         | 5.9   | 21.0         | 21.0      | 9.0         | 25.5         |
| Cu<br>Zn | $50.0 \pm 5.5$         | $19.5 \pm 5.8$  | $24.0 \pm 2.4$                | 55.9<br>24.5 | 19.0  | 16 5  | 20.0  | 9.8   | 21.0         | 20.1         | 7.0   | 20.0         | 25.0      | 7.0         | 10.3         |
| Zn<br>Ca | $24 \pm 1.9$<br>70 + 8 | $7.4 \pm 1.2$   | $17.7 \pm 3.3$<br>$72 \pm 11$ | 40.2         | 35.6  | 31.2  | 10.2  | 21.3  | 30.5         | 24.5         | 20.1  | 30.5         | 23.9      | 7.9<br>87.0 | 19.3<br>60.0 |
| Rh       | 10 ± 8                 | 62 ± 15         | /2 ± 11                       | 7 27         | 1 70  | 6 27  | 7 31  | 1 64  | 50.5<br>6.24 | 7 26         | 1 60  | 50.5<br>6 14 | 7 0/      | 1.86        | 6.02         |
| Sr       | 691 + 44               | 345 + 12        | 292 + 17                      | 177          | 80    | 71    | 712   | 337   | 304          | 704          | 327   | 301          | 714       | 349         | 279          |
| Y        | /                      | /               | 2)2 ± 11                      | 20.5         | 15 0  | 14 2  | 85 5  | 62 2  | 61 4         | 88 5         | 61 7  | 63 3         | 90.0      | 56.4        | 60 4         |
| Zr       | 886 + 95               | ,<br>1160 + 110 | 986 + 84                      | 838          | 1189  | 995   | 648   | 870   | 893          | 692          | 1056  | 927          | 914       | 1303        | 993          |
| Nb       | /                      | /               | /                             | 64.1         | 39.6  | 46.5  | 16.9  | 4.3   | 75.7         | 83.7         | 91.3  | 80.6         | 88.2      | 96.7        | 80.4         |
| Cs       |                        |                 |                               | 0.37         | 0.08  | 0.48  | 0.31  | 0.07  | 0.43         | 0.33         | 0.06  | 0.39         | 0.38      | 0.08        | 0.48         |
| Ba       | 1                      | /               | /                             | 16.9         | 7.2   | 10.8  | 65.4  | 35.1  | 47.6         | 71.2         | 35.9  | 46.0         | 77.5      | 43.0        | 51.6         |
| La       | 1                      | 1               | 1                             | 93.1         | 75.5  | 72.2  | 259   | 129   | 149          | 260          | 130   | 147          | 259       | 120         | 151          |
| Ce       | 1                      | /               | /                             | 223          | 111   | 116   | 484   | 253   | 299          | 523          | 255   | 296          | 518       | 247         | 294          |
| Pr       | 1                      | /               | /                             | 18.2         | 11.8  | 12.5  | 58.4  | 21.8  | 28.6         | 62.6         | 22.5  | 28.8         | 64.6      | 22.7        | 30.5         |
| Nd       | 1                      | /               | /                             | 63.7         | 34.3  | 39.3  | 218   | 66    | 95           | 233          | 69.7  | 95.7         | 249       | 76.6        | 111          |
| Sm       | 1                      | /               | /                             | 9.94         | 4.92  | 5.89  | 37.3  | 11.2  | 15.8         | 39.5         | 11.6  | 16.2         | 40.1      | 11.3        | 16.7         |
| Eu       | 1                      | /               | /                             | 1.62         | 0.84  | 0.98  | 6.34  | 2.00  | 2.86         | 6.59         | 2.14  | 2.94         | 7.75      | 2.05        | 2.96         |
| Gd       | /                      | /               | /                             | 6.18         | 3.11  | 3.49  | 22.2  | 7.93  | 10.4         | 23.8         | 7.77  | 10.2         | 29.3      | 7.77        | 10.8         |
| Tb       | 1                      | /               | /                             | 0.84         | 0.54  | 0.54  | 3.19  | 1.58  | 1.79         | 3.35         | 1.64  | 1.81         | 4.11      | 1.64        | 1.79         |
| Dy       | 1                      | /               | /                             | 4.66         | 3.47  | 3.15  | 18.5  | 11.0  | 11.8         | 19.6         | 11.6  | 12.1         | 23.7      | 11.8        | 12.6         |
| Ho       | /                      | /               | /                             | 0.89         | 0.68  | 0.59  | 3.52  | 2.35  | 2.42         | 3.78         | 2.49  | 2.47         | 4.07      | 2.33        | 2.46         |
| Er       | /                      | /               | /                             | 2.46         | 1.85  | 1.68  | 9.71  | 7.15  | 7.16         | 10.6         | 7.45  | 7.52         | 12.3      | 7.45        | 7.54         |
| Tm       | /                      | /               | /                             | 0.37         | 0.28  | 0.26  | 1.51  | 1.13  | 1.14         | 1.61         | 1.22  | 1.21         | 1.88      | 1.21        | 1.23         |
| Yb       | /                      | /               | /                             | 2.64         | 1.75  | 1.65  | 10.7  | 8.12  | 8.10         | 11.4         | 8.59  | 8.41         | 13.1      | 8.61        | 8.45         |
| Lu       | 1                      | /               | /                             | 0.38         | 0.25  | 0.25  | 1.54  | 1.23  | 1.21         | 1.66         | 1.28  | 1.30         | 1.84      | 1.26        | 1.31         |
| Hf       | /                      | /               | /                             | 25.3         | 35.7  | 29.9  | 20.4  | 28.1  | 28.3         | 22.9         | 36.1  | 30.9         | 29.5      | 42.9        | 32.6         |
| Та       | /                      | /               | /                             | 2.22         | 0.67  | 2.01  | 0.79  | 0.33  | 3.30         | 6.99         | 6.88  | 7.19         | 8.18      | 9.78        | 7.68         |
| Tl       | /                      | /               | /                             | 0.06         | 0.01  | 0.03  | 0.06  | 0.01  | 0.04         | 0.06         | 0.01  | 0.04         | 0.07      | 0.01        | 0.03         |
| Pb       | 116 ± 9                | $26.7 \pm 5.7$  | $35.7 \pm 6.9$                | 75.7         | 10.4  | 16.1  | 94.2  | 21.3  | 25.5         | 99.7         | 22.2  | 26.3         | 115       | 26.0        | 32.1         |
| Th       | /                      | /               | /                             | 64.9         | 66.4  | 48.8  | 92.4  | 99.2  | 85.5         | 99.9         | 101   | 90.0         | 109       | 99.5        | 88.9         |
| U        | /                      | /               | /                             | 37.5         | 35.8  | 30.0  | 32.9  | 32.4  | 27.9         | 35.4         | 34.3  | 29.6         | 37.0      | 34.3        | 26.9         |

注:"/"表示该标准物质没有提供此元素的定值。

的代表性组分,且 Al 和 Ti 作为铝土矿基本分析项 目相对难以分解。因此,实验对不同温度下 (200℃、210℃、220℃、230℃)三种元素的回收率进 行了验证,结果如图5所示。可以看出,在所有的温 度条件下,六种铝土矿标准物质中 Al、Ti 和 P 的元 素回收率分别在90%~110%、90%~110%和85% ~105%之间,说明对于 Al<sub>2</sub>O<sub>3</sub>含量高达 90.36% (GBW07181)且含有少量刚玉的铝土矿,氟化氢铵

分解法均可实现其完全分解,再次验证了此方法用 来测定含刚玉铝土矿中痕量元素的准确性。

# 2.3 分析方法评价

#### 2.3.1 方法检出限

根据上述 2.1 节选择的氟化氢铵分解最佳条件,分别制备 12 份优级纯和分析纯氟化氢铵分解全过程空白,测定后计算 37 种痕量元素的平均含量,以3 倍标准偏差同时考虑 1000 倍稀释因子所对应



图 4 不同熔矿方法下铝土矿标准物质(GBW07177、GBW07181、GBW07182)中9种元素的回收率

Fig. 4 Recovery of 9 elements in bauxite standard materials (GBW07177, GBW07181, GBW07182) under different dissolution methods



图 5 氟化氢铵分解铝土矿标准物质(GBW07177~GBW07182)中 Al、Ti、P 的回收率 Fig. 5 Recovery of Al, Ti and P in bauxite standard materials (GBW07177 – GBW07182) decomposed by ammonium bifluoride

的浓度为方法检出限(LOD),具体结果以及文献报 道传统硝酸-氢氟酸密闭消解法的过程空白和检出 限见表2。

从表 2 可以看出,除 Cr 和 Ni 外,分析纯氟化氢 铵分解法的过程空白为 0.002~0.60ng/g,检出限 为 0.001~0.49μg/g,与传统的硝酸 – 氢氟酸密闭 消解法基本相当(过程空白 0.000~0.27ng/g,检出 限 0.001~0.48μg/g),能满足地质样品中大部分痕 量元素分析需求。但是,其中 Sc、Cr、Ni、Ba 和 Pb 的 过程空白分别为 0.30、4.62、11.73、0.32 和 0.31 ng/g,比传统硝酸 – 氢氟酸密闭消解法高约 10~ — 676 — 320 倍,不适用于超痕量 Sc、Cr、Ni、Ba 和 Pb 的测定。优级纯氟化氢铵分解法 Sc、Cr、Ni、Ba 和 Pb 的过程空白明显减小,但 Cu 的过程空白为 1.48ng/g,比传统硝酸 – 氢氟酸密闭消解法高约 45 倍,不适于超痕量 Cu 的测定。37 种痕量元素的检出限在 0.002~0.43µg/g之间,除 Cu、Ba 和 Pb 外,其他各元素的检出限与传统硝酸 – 氢氟酸密闭消解法基本 相当。

此外,据文献[34]报道,商业的氟化氢铵中含 有较高含量的 Cr 和 Ni,需按照 Zhang 等<sup>[35]</sup>采用的 PFA 辅助蒸发装置对氟化氢铵进行提纯。纯化后高

# 表2 氟化氢铵分解和传统硝酸 – 氢氟酸密闭消解法的 过程空白和检出限

Table 2 Process blanks and detection limits for  $\rm NH_4\,HF_2$  decomposition and conventional HF – HNO<sub>3</sub> closed digestion

| 41.001              |             | 过程空                 | 白(ng/g,n | =12)  | 检出限(µg/g)          |       |       |  |  |
|---------------------|-------------|---------------------|----------|-------|--------------------|-------|-------|--|--|
| 待测                  | 分析质量        | 1mL 氢氟酸             | 分析纯      | 优级纯   | 1mL 氢氟酸 –          | 分析纯   | 优级纯   |  |  |
| 兀系                  | (丰度,%)      | 1mL 硝酸 <sup>①</sup> | 氟化氢铵     | 氟化氢铵  | 1mL硝酸 <sup>①</sup> | 氟化氢铵  | 氟化氢铵  |  |  |
| Li                  | 7(92.50)    | 0.017               | 0.070    | 0.034 | 0.031              | 0.078 | 0.062 |  |  |
| Be                  | 9(100.00)   | 0.000               | 0.002    | 0.003 | 0.004              | 0.008 | 0.010 |  |  |
| $\mathbf{Sc}$       | 45(100.00)  | 0.029               | 0.299    | 0.049 | 0.030              | 0.152 | 0.066 |  |  |
| V                   | 51(99.75)   | 0.229               | 0.018    | 0.019 | 0.231              | 0.016 | 0.013 |  |  |
| Cr                  | 52(83.79)   | 0.230               | 4.62     | 0.906 | 0.144              | 2.00  | 0.426 |  |  |
| Co                  | 59(100.00)  | 0.078               | 0.316    | 0.010 | 0.018              | 0.133 | 0.007 |  |  |
| Ni                  | 60(26.10)   | 0.036               | 11.73    | 0.222 | 0.072              | 4.87  | 0.079 |  |  |
| Cu                  | 63(69.17)   | 0.033               | 0.152    | 1.48  | 0.043              | 0.038 | 0.234 |  |  |
| Zn                  | 66(27.90)   | 0.267               | 0.601    | 0.800 | 0.481              | 0.494 | 0.322 |  |  |
| Ga                  | 71(39.90)   | 0.003               | 0.002    | 0.000 | 0.008              | 0.017 | 0.009 |  |  |
| Rb                  | 85(72.17)   | 0.007               | 0.028    | 0.022 | 0.013              | 0.019 | 0.023 |  |  |
| $\mathbf{Sr}$       | 88(82.58)   | 0.026               | 0.010    | 0.011 | 0.033              | 0.098 | 0.013 |  |  |
| Y                   | 89(100.00)  | 0.001               | 0.010    | 0.007 | 0.004              | 0.029 | 0.015 |  |  |
| Zr                  | 90(51.45)   | 0.088               | 0.074    | 0.069 | 0.100              | 0.234 | 0.072 |  |  |
| Nb                  | 93(100.00)  | 0.001               | 0.097    | 0.051 | 0.004              | 0.082 | 0.052 |  |  |
| Cs                  | 133(100.00) | 0.002               | 0.002    | 0.003 | 0.004              | 0.007 | 0.008 |  |  |
| Ba                  | 138(71.70)  | 0.023               | 0.317    | 0.193 | 0.059              | 0.488 | 0.390 |  |  |
| La                  | 139(99.91)  | 0.004               | 0.015    | 0.014 | 0.013              | 0.022 | 0.029 |  |  |
| Ce                  | 140(88.48)  | 0.007               | 0.026    | 0.016 | 0.023              | 0.048 | 0.015 |  |  |
| Pr                  | 141(100.00) | 0.001               | 0.003    | 0.003 | 0.005              | 0.006 | 0.005 |  |  |
| Nd                  | 142(27.12)  | 0.004               | 0.012    | 0.007 | 0.026              | 0.020 | 0.009 |  |  |
| $\operatorname{Sm}$ | 152(26.70)  | 0.002               | 0.003    | 0.003 | 0.010              | 0.005 | 0.009 |  |  |
| Eu                  | 153(52.20)  | 0.001               | 0.001    | 0.001 | 0.003              | 0.001 | 0.008 |  |  |
| Gd                  | 158(24.84)  | 0.001               | 0.003    | 0.003 | 0.006              | 0.007 | 0.012 |  |  |
| Tb                  | 159(100.00) | 0.000               | 0.000    | 0.001 | 0.000              | 0.001 | 0.004 |  |  |
| Dy                  | 164(28.20)  | 0.001               | 0.002    | 0.002 | 0.006              | 0.009 | 0.005 |  |  |
| Ho                  | 165(100.00) | 0.000               | 0.000    | 0.001 | 0.001              | 0.001 | 0.003 |  |  |
| Er                  | 166(33.60)  | 0.001               | 0.001    | 0.001 | 0.006              | 0.005 | 0.004 |  |  |
| Tm                  | 169(100.00) | 0.000               | 0.000    | 0.000 | 0.001              | 0.001 | 0.002 |  |  |
| Yb                  | 174(31.80)  | 0.001               | 0.001    | 0.001 | 0.008              | 0.006 | 0.003 |  |  |
| Lu                  | 175(97.41)  | 0.000               | 0.000    | 0.000 | 0.001              | 0.001 | 0.002 |  |  |
| Hf                  | 180(35.10)  | 0.003               | 0.003    | 0.004 | 0.007              | 0.013 | 0.010 |  |  |
| Та                  | 181(99.99)  | 0.010               | 0.007    | 0.010 | 0.033              | 0.014 | 0.028 |  |  |
| Tl                  | 205(70.48)  | 0.001               | 0.001    | 0.002 | 0.006              | 0.002 | 0.005 |  |  |
| Pb                  | 208(52.40)  | 0.016               | 0.311    | 0.151 | 0.013              | 0.463 | 0.374 |  |  |
| Th                  | 232(100.00) | 0.001               | 0.010    | 0.005 | 0.004              | 0.041 | 0.009 |  |  |
| U                   | 238(99.27)  | 0.000               | 0.002    | 0.002 | 0.001              | 0.010 | 0.003 |  |  |

注:①数据来源于文献[39]报道的传统硝酸-氢氟酸密闭消解法 过程空白和检出限。

氯酸 - 氟化氢铵分解法 37 种痕量元素的过程空白 为0.001~0.42ng/g,检出限为0.002~0.32μg/g。 除 Co、Ba 和 Pb 的微小差异外,本方法优级纯氟化 氢铵的检出限与纯化后高氯酸 - 氟化氢铵分解法相 当。镁加入法<sup>[37]</sup>分析大多数元素的过程空白和检 出限分别为0.001~0.32ng/g 和0.002~0.27μg/g, 对于地质样品中这些痕量元素的测定是可以接受 的。但其中 V、Cr、Ni、Zn 的检出限分别高达1.905、 6.290、0.999 和 3.853μg/g,比本方法高出约 11~ 145 倍,本方法 Pb 的检出限比镁加入法高约 8 倍。 除此之外,两种方法的检出限也基本一致,能满足绝 大部分痕量元素分析的需求。

### 2.3.2 方法精密度

按照上述 2.1 节选择的氟化氢铵分解最佳条件, 独立分解 12 份铝土矿标准样品 GBW07177,并应用 ICP – MS 测定 37 种痕量元素的含量,分别计算各元 素的相对标准偏差(RSD)。从表 3 数据可以看出 37 种元素测定结果的 RSD 在 1.14% ~8.90%之间,尤 其是对于含量大于 10.0µg/g 的元素,除 Gd、Dy 和 Er 外,RSD 均小于 5.0%。与文献[37]报道的高氯酸 – 氟化氢铵分解 ICP – MS 法测定 GBW07177 中痕量元 素的 RSD 基本相当(除 TI 元素外,RSD 为 0.8% ~ 5.8%),其中 Be、V、Co、Ni、Cu 等 13 种元素的 RSD 稍 低,其他元素则相对稍高。同时与镁加入法<sup>[37]</sup>的 RSD 也基本一致(除 TI 元素外,RSD 为 1.8% ~ 6.8%),其中 Li、Be、V、Co、Ni 等 17 种元素的 RSD 稍 低,其他元素相对稍高。

需要指出的是,本方法的 RSD 为 12 份 GBW07177 独立测定结果计算得到的,而文献[37] 中则为6 份测定结果的值。本方法 Cu 元素的测定 值与认定值相符,高氯酸 - 氟化氢铵分解法和镁加 入法<sup>[37]</sup>则比认定值分别低约 35% 和 40%。此外, 本方法大部分重稀土元素(Eu、Gd、Tb、Dy、Ho、Er、 Tm、Yb、Lu)的分析结果比文献中两种方法的结果 高约 10% ~ 20%。本方法 RSD 均小于 10%,能够 满足铝土矿中痕量元素分析的要求。

## 3 结论

本文采用超纯、高沸点的氟化氢铵作熔剂,通过 在熔样过程中使用少量硫酸,高温下在 PFA 小瓶中 分解样品,确定了最佳熔矿温度、消解时间及试剂用 量,解决了常规四酸、五酸和封闭压力酸溶法对含刚 玉铝土矿分解不完全的问题,建立了氟化氢铵快速 分解 ICP - MS 测定含刚玉铝土矿中锂、镓、锆、稀土 等痕量元素的分析方法。

本方法分解样品完全,较高氯酸 - 氟化铵/氟化 氢铵分解法的熔矿温度低,消解时间较短、效率更高,能够快速、准确地测定高铝及含刚玉铝土矿中的 痕量元素。需要说明的是,商业分析纯氟化氢铵中 Sc、Cr、Ni、Ba和Pb,以及优级纯氟化氢铵中Cu的含 量相对较高,当样品中这些元素的含量极低时,无法 利用本方法准确测定。利用PFA辅助蒸发装置对 氟化氢铵提纯后来消解样品,可以解决此类问题,实

#### 表 3 氟化氢铵分解方法的精密度

Table 3 Method precision test for NH4 HF2 decomposition

| 待测元素 | 测定值         | 标准偏差        | RSD  | <b></b> <sup> </sup> | 测定值         | 标准偏差        | RSD  | 法 測 示 麦 | 测定值         | 标准偏差        | RSD  |
|------|-------------|-------------|------|----------------------|-------------|-------------|------|---------|-------------|-------------|------|
|      | $(\mu g/g)$ | $(\mu g/g)$ | (%)  | 时仍几系                 | $(\mu g/g)$ | $(\mu g/g)$ | (%)  | 可仍几系    | $(\mu g/g)$ | $(\mu g/g)$ | (%)  |
| Li   | 86.5        | 3.34        | 3.86 | Zr                   | 914         | 24.0        | 2.35 | Dy      | 23.7        | 1.60        | 8.10 |
| Be   | 8.81        | 0.12        | 1.39 | Nb                   | 95.2        | 2.41        | 2.10 | Ho      | 4.10        | 0.29        | 7.05 |
| Sc   | 62.5        | 1.57        | 3.31 | Cs                   | 0.36        | 0.03        | 7.22 | Er      | 12.2        | 0.92        | 7.54 |
| V    | 221         | 4.25        | 1.92 | Ba                   | 74.6        | 2.50        | 3.35 | Tm      | 1.62        | 0.12        | 7.43 |
| Cr   | 243         | 7.54        | 3.10 | La                   | 253         | 5.39        | 2.13 | Yb      | 13.3        | 0.56        | 4.97 |
| Co   | 6.00        | 0.19        | 3.21 | Се                   | 513         | 5.84        | 1.14 | Lu      | 1.83        | 0.12        | 6.70 |
| Ni   | 36.2        | 0.76        | 2.10 | Pr                   | 61.2        | 1.33        | 2.18 | Hf      | 28.3        | 0.85        | 3.51 |
| Cu   | 31.4        | 0.81        | 2.58 | Nd                   | 234         | 4.66        | 1.99 | Та      | 7.96        | 0.26        | 3.58 |
| Zn   | 26.8        | 2.53        | 3.30 | Sm                   | 37.4        | 1.17        | 3.14 | T1      | 0.064       | 0.004       | 6.32 |
| Ga   | 85.3        | 2.45        | 2.88 | Eu                   | 7.48        | 0.58        | 8.90 | Pb      | 118         | 3.25        | 2.74 |
| Rb   | 7.94        | 0.52        | 8.61 | Gd                   | 29.2        | 1.85        | 5.56 | Th      | 103         | 3.40        | 3.31 |
| Sr   | 693         | 31.9        | 4.60 | Tb                   | 4.21        | 0.28        | 6.76 | U       | 37.4        | 1.62        | 4.34 |
| Y    | 90.4        | 2.91        | 3.61 |                      |             |             |      |         |             |             |      |

现对含刚玉铝土矿样品中上述痕量元素的准确分析。此外,本方法(或经过改进后)为其他一些难熔 矿物(如铬铁矿、锡石、锶矿石等)痕量元素分析提 供了思路,今后可进一步拓展在此方面的应用。

## 4 参考文献

- [1] 龙克树,付勇,龙珍,等. 全球铝土矿中稀土和钪的资源潜力分析[J]. 地质学报,2019,93(6):1279-1295.
  Long K S, Fu Y, Long Z, et al. Resource potential analysis of REE and Sc in global bauxite [J]. Acta Geologica Sinica,2019,93(6):1279-1295.
- [2] 卢业友,杨芬.电感耦合等离子体原子发射光谱法测定铝土矿中锂和镓[J].冶金分析,2017,37(3): 70-73.

Lu Y Y, Yang F. Determination of lithium and gallium in bauxite by inductively coupled plasma atomic emission spectrometry [J]. Metallurgical Analysis, 2017, 37 (3): 70 – 73.

- [3] 钟海仁,孙艳,杨岳清,等. 铝土矿(岩)型锂资源及其 开发利用潜力[J].矿床地质,2019,38(4):898-916.
  Zhong H R, Sun Y, Yang Y Q, et al. Bauxite (aluminum) - type lithium resources and analysis of its development and utilization potential [J]. Mineral Deposits,2019,38(4):898-916.
- [4] 严爽,黄康俊,付勇,等. 铝土矿中锂同位素分离提纯 方法的建立[J]. 岩矿测试,2020,39(1):41-52.
  Yan S, Huang K J, Fu Y, et al. The establishment of methods for separating and purifying lithium isotopes in bauxite[J]. Rock and Mineral Analysis,2020,39(1): 41-52.
- [5] 金中国,周家喜,黄智龙,等.黔北务一正一道地区典
  678 —

# 型铝土矿床伴生有益元素锂、镓和钪分布规律[J]. 中国地质,2015,42(6):1910-1918.

Jin Z G,Zhou J X, Huang Z L, et al. The distribution of associated elements Li,Sc and Ga in the typical bauxite deposits over the Wuchuan—Zheng 'an—Daozhen bauxite ore district, northern Guizhou Province [J]. Geology in China,2015,42(6):1910-1918.

- [6] Lu F H, Xiao T F, Lin J, et al. Resources and extraction of Gallium: A review [J]. Hydrometallurgy, 2017, 174: 105-115.
- [7] 王登红,王瑞江,李建康,等.中国三稀矿产资源战略 调查研究进展综述[J].中国地质,2013,40(2): 361-370.
  Wang D H, Wang R J, Li J K, et al. The progress in the strategic research survey of rare earth, rare metal and rare - scattered elements mineral resources [J]. Geology in China,2013,40(2):361-370.
- [8] Putzolu F, Papa A P, Mondillo N, et al. Geochemical characterization of bauxite deposits from the Abruzzi mining district (Italy) [J]. Minerals, 2018, 8(7):298.
- Khosravi M, Abedini A, Alipour S, et al. The Darzi—Vali bauxite deposit, West - Azarbaidjan Province, Iran: Critical metals distribution and parental affinities [J]. Journal of African Earth Sciences, 2017, 129:960 - 972.
- [10] Torró L, Proenza J A, Aiglsperger T, et al. Geological, geochemical and mineralogical characteristics of REE – bearing Las Mercedes bauxite deposit, Dominican Republic [J]. Ore Geology Reviews, 2017, 89: 114-131.
- [11] 《岩石矿物分析》编委会. 岩石矿物分析(第四版 第三分册)[M]. 北京:地质出版社,2011:255-256.
   The editorial committee of *Rock and Mineral Analysis*.

Rock and mineral analysis (The fourth edition; Volume Ⅲ) [M]. Beijing: Geological Publishing House, 2011; 255 - 256.

- [12] 胡宝珍. 罗丹明 B 萃取光度法测定铝土矿中镓的质量保证[J]. 冶金分析,2005,25(2):95-96.
  Hu B Z. Quality assurance of determination of gallium in bauxite by Rhodamine B extraction photometry [J]. Metallurgical Analysis,2005,25(2):95-96.
- [13] 朱鲜红,李德生,张晶华,等.乙酸丁酯萃取火焰原子 吸收光谱法测定铝土矿中微量镓[J].冶金分析, 2004,24(6):63-65.

Zhu X H, Li D S, Zhang J H, et al. Determination of micro gallium in bauxite by butyl acetate extraction and flame atomic absorption spectrometry [J]. Metallurgical Analysis,2004,24(6):63-65.

- [14] Calagari A A, Abedini A. Geochemical investigations on Permo—Triassic bauxite horizon at Kanisheeteh, east of Bukan, west Azarbaidjan, Iran [ J ]. Journal of Geochemical Exploration, 2007, 94:1 - 18.
- [15] Peh Z, Galović E K. Geochemistry of Istrian Lower Palae – ogene bauxites—Is it relevant to the extent of subaerial exposure during Cretaceous times? [J]. Ore Geology Reviews,2014,63:296-306.
- [16] Cotta A J B, Enzweiler J. Classical and new procedures of whole rock dissolution for trace element determination by ICP - MS [ J ]. Geostandards and Geoanalytical Research, 2011, 36(1):27 - 50.
- Zhang W, Hu Z C, Liu Y S, et al. Reassessment of HF/ HNO<sub>3</sub> decomposition capability in the high – pressure digestion of felsic rocks for multi – element determination by ICP – MS [ J ]. Geostandards and Geoanalytical Research, 2012, 36(3):271 – 278.
- [18] 王琰,孙洛新,张帆,等. 电感耦合等离子体发射光谱 法测定含刚玉的铝土矿中硅铝铁钛[J]. 岩矿测试, 2013,32(5):719-723.

Wang Y, Sun L X, Zhang F, et al. Determination of Si, Al, Fe and Ti in bauxite by inductively coupled plasma – atomic emission spectrometry [J]. Rock and Mineral Analysis, 2013, 32(5):719 – 723.

[19] 孙红宾,刘贵磊,赵怀颖,等. 偏硼酸锂熔融-ICP-AES法测定含刚玉铝土矿中主成分[J].分析试验室, 2017,36(12):1429-1434.

> Sun H B, Liu G L, Zhao H Y, et al. Determination of main components in corundum – bearing bauxite by ICP – AES with lithium metaborate fusion method [J]. Chinese Journal of Analysis Laboratory, 2017, 36 (12): 1429 – 1434.

[20] 杨小丽,李小丹,邹棣华. 溶样方法对电感耦合等离

子体质谱法测定铝土矿中稀土元素的影响[J]. 冶金 分析,2016,36(7):56-62.

Yang X L, Li X D, Zou D H. Influence of sample dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J]. Metellurgical Analysis, 2016, 36 (7): 56-62.

- [21] da Costa M L, da Silva Cruz G, de Almeida H D F, et al. On the geology, mineralogy and geochemistry of the bauxite – bearing regolith in the Lower Amazon Basin: Evidence of genetic relationship [ J ]. Journal of Geochemical Exploration, 2014, 146:58 - 74.
- [22] Monsels D A, van Bergen M J. Bauxite formation on Proterozoic bedrock of Suriname [J]. Journal of Geochemical Exploration, 2017, 180:71 - 90.
- [23] Mongelli G, Boni M, Buccione R, et al. Geochemistry of the Apulian karst bauxites (southern Italy): Chemical fractionation and parental affinities [J]. Ore Geology Reviews, 2014, 63:9 - 21.
- [24] Ahmadnejad F,Zamanian H,Taghipour B,et al. Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran: Implications for ore genesis, rare earth elements fractionation and parental affinity [J]. Ore Geology Reviews, 2017, 86:755 - 783.
- [25] 杨载明. 电感耦合等离子体发射光谱法测定铝土矿 样品中镓三种前处理方法的比较[J]. 岩矿测试, 2011,30(3):315-317.
  Yang Z M. The comparison of three sample pretreatment methods in determination of gallium in bauxite ores by inductively coupled plasma – atomic emission spectro – metry[J]. Rock and Mineral Analysis, 2011, 30(3): 315-317.
- [26] 高志军,陈静,陈浩凤,等. 熔融制样 X 射线荧光光 谱法测定硅酸盐和铝土矿中主次组分[J]. 冶金分析, 2015,35(7):73-78.
  Gao Z J, Chen J, Chen H F, et al. Simultaneous determination of major and minor components in silicate and bauxite by X - ray fluorescence [J]. Metellurgical Analysis,2015,35(7):73-78.
- [27] 胡璇,石磊,张炜华.碱熔融-电感耦合等离子体发 射光谱法测定高硫铝土矿中的硫[J]. 岩矿测试, 2017,36(2):124-129.

Hu X, Shi L, Zhang W H. Determination of sulfur in high - sulfur bauxite by alkali fusion - inductively coupled plasma - optical emission spectrometry [J]. Rock and Mineral Analysis, 2017, 36(2):124 - 129.

[28] Awaji S, Nakamura K, Nozaki T, et al. A simple method for precise determination of 23 trace elements in granitic rocks by ICP – MS after lithium tetraborate fusion [J]. Resource Geology,2006,56(4):471-478.

- [29] Zhang W, Hu Z C, Liu Y S, et al. Quantitative analysis of major and trace elements in NH<sub>4</sub> HF<sub>2</sub> – modified silicate rock powders by laser ablation – inductively coupled plasma mass spectrometry [J]. Analytica Chimica Acta, 2017,983(29):149-159.
- [30] Zhang W, Hu Z C. Recent advances in sample prepa ration methods for elemental and isotopic analysis of geological samples [J]. Spectrochimica Acta Part B, 2019,160:105690.
- [31] Magaldi T T, Navarro M S, Enzweiler J. Assessment of dissolution of silicate rock reference materials with ammonium bifluoride and nitric acid in a microwave oven
   [J]. Geostandards and Geoanalytical Research, 2019, 43
   (1):189-208.
- [32] Ayranci B. A rapid decomposition method for analyzing zirconia[J]. Mineral Research and Exploration Bulletin, 1989,109:75-79.
- [33] Mariet C, Belhadj O, Leroy S, et al. Relevance of NH<sub>4</sub> F in acid digestion before ICP – MS analysis [J]. Talanta, 2008,77(2):445 – 450.
- [34] Hu Z C, Gao S, Liu Y S, et al. NH<sub>4</sub> F assisted high pressure digestion of geological samples for multi –

element analysis by ICP – MS[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3):408 – 413.

- [35] Zhang W, Hu Z C, Liu Y S, et al. Total rock dissolution using ammonium bifluoride (NH<sub>4</sub> HF<sub>2</sub>) in screw – top teflon vials: A new development in open – vessel digestion [J]. Analytical Chemistry, 2012, 84 (23): 10686 – 10693.
- [36] Hu Z C, Zhang W, Liu Y S, et al. Rapid bulk rock decomposition by ammonium fluoride (NH<sub>4</sub>F) in open vessels at an elevated digestion temperature [J]. Chemical Geology, 2013, 355:144 - 152.
- Zhang W, Qi L, Hu Z C, et al. An investigation of diges

   tion methods for trace elements in bauxite and their determination in ten bauxite reference materials using inductively coupled plasma mass spectrometry [J]. Geostandards and Geoanalytical Research, 2016, 40(2): 195 216.
- [38] Yokoyama T, Makishima A, Nakamura E. Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion [J]. Chemical Geology, 1999, 157:175 - 187.
- [39] Hu Z C, Gao S. Upper crustal abundances of trace elements: A revision and update[J]. Chemical Geology, 2008,253(3-4):205-221.

# Determination of Lithium, Gallium, Zirconium, Rare Earth Elements and Other Trace Elements in Corundum – bearing Bauxite by Inductively Coupled Plasma – Mass Spectrometry with Rapid Decomposition of Ammonium Bifluoride

LIU Gui – lei, XU Chun – xue, CHEN Zong – ding, WEN Hong – li (National Research Center for Geoanalysis, Beijing 100037, China)

## HIGHLIGHTS

- (1)  $NH_4HF_2$  was used as a flux, which solved the problem of incomplete decomposition of corundum containing bauxite by four acid, five acid and closure pressure acid dissolution methods.
- (2) The optimum temperature, time and reagent dosage of  $NH_4HF_2$  to decompose corundum bearing bauxite were determined.
- (3) The study was applicable to trace element analysis of bauxite, especially high alumina and corundum bearing bauxite.



#### ABSTRACT

**BACKGROUND**: Bauxite is often accompanied by useful components such as lithium, gallium, zirconium, and rare earth metals. Complete extraction and accurate determination of the content of these components are of great significance for the comprehensive evaluation and comprehensive utilization of bauxite resources. However, bauxite often contains a small amount of corundum, which is not completely decomposed by the conventional four – acid, five – acid and closure pressure acid dissolution methods, resulting in lower measurement results.

**OBJECTIVES**: To explore the new decomposition method to achieve rapid and accurate analysis of trace elements in corundum – bearing bauxite.

**METHODS**: A digestion technique using the solid compound ammonium bifluoride in a screw – capped PFA vial at high temperature has been developed for trace elements analysis of corundum – bearing bauxite by using a small amount of sulfuric acid during the fusion process. The factors such as different melting temperature, digestion time and reagent dosage were investigated in detail, the optimal smelting conditions  $(200^{\circ}\text{C}, 3\text{h}, \text{ sample ratio } 4 \text{ : } 1)$  were confirmed. An analytical method for determination of 37 trace elements in corundum – bearing bauxite by inductively coupled plasma – mass spectrometry with rapid decomposition of ammonium bifluoride was established. **RESULTS**: This method can be used to quickly and effectively decompose corundum – bearing bauxite, which has been verified by three national bauxite standard materials GBW07177, GBW07181 and GBW07182. The proposed method was also compared with the results of the four – acid, five – acid and closure pressure acid dissolution methods. The recoveries of nine elements such as Li, Ga, Sr, Zr and Pb in the three standard materials were from 95.0% to 115.0%, 90.0% to 110.0%, and 90.0% to 110.0%, respectively. The analytical result was in agreement with the certified values. The detection limits of the method were from 0.002 to  $0.43 \,\mu g/g$ , which was closely equivalent to the detection limits ( $0.000 - 0.48 \,\mu g/g$ ) of the traditional nitric acid – hydrofluoric acid closure digestion method. The precisions were from 1.14% to 8.84%, which qualified it to meet the analytical requirements of trace elements in bauxite.

**CONCLUSIONS**: This method can be used to achieve accurate analysis of major elements such as Al, Ti, and P in bauxite ( $Al_2O_3$  content between 42.97% and 90.36%), which further verifies the accuracy of this method for the determination of trace elements in bauxite.

**KEY WORDS**: ammonium bifluoride; rapid decomposition; inductively coupled plasma – mass spectrometry; corundum – bearing bauxite; trace elements