Uncertainty Evaluation Results for the Determination of Total Nitrogen in Soil Samples by Semimicro-Kjeldahl Method

BAI Jin-feng, HU Wai-ying, ZHANG Qin, ZHOU Jian-hui

(1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; 2. Tangshan Laboratory, Hebei Geology and Mineral Exploration Bureau, Tangshan 063000, China)

Abstract: The uncertainty of measurement results for the determination of total nitrogen in soil samples by semimicro-Kjeldahl method was evaluated in this example. The results show that the main sources of the total uncertainty comes from the fraction uncertainties of weighting of borax standard and sample, purity of borax, volume of volumetric flask, pipette and burette, molar mass of relative elements and measurement repeatability. The total uncertainty for the determinations of total nitrogen by semimicro-Kjeldahl method was combined and its extended uncertainty was obtained via multiplying it by extended factor of 2 under confidence probability of 95%.

Key words: uncertainty evaluation; semimicro-Kjeldahl method; total nitrogen; soil
元素的摩尔质量以及测量的重复性。本文通过具体实验，按照测量不确定度的评定步骤[41]，对其测量的不确定度进行了分析评定。

1. 测定方法

1.1 仪器和环境条件

Sartorius BS124S 型万分之一电子天平（瑞士梅特勒 - 托利多公司）；20 mL 单标线移液管（A 级），25 mL 滴定管（A 级），1 L 容量瓶（A 级）；溶液配制与使用时的温度变化≤±2 °C。

1.2 钠砂标准溶液的配制

0.02 mol/L 1/2NaB₄O₇·10H₂O：称取 3.8137 g 硼砂（Na₂B₄O₇·10H₂O，质量分数 99.5% ~ 100.5%）于烧杯中，用水溶解后移入 1 L 容量瓶中，定容，摇匀。

1.3 盐酸标准溶液浓度的标定

移取 10 mL 0.02 mol/L 1/2NaB₄O₇标准溶液于 150 mL 锥形瓶中，加入指示剂，用待标定的 HCl 标准溶液滴定，记录消耗的体积，重复标定 5 次，并进行空白校正。

1.4 测定方法

称取 0.5000 g 样品于凯氏烧瓶中，加入混合加速剂，用浓 H₂SO₄消煮，使样品中的氯转化为（NH₄）₂SO₄，然后用 NaOH 碱化，加热蒸馏出 NH₃，经 H₂BO₃吸收，用 HCl 标准溶液滴定，并进行试剂空白校正。

2 数学模型

HCl 标准溶液的浓度：

\[c_{HCl} = \frac{m_{NaB_4O_7 \cdot 10H_2O} \times P_{NaB_4O_7 \cdot 10H_2O} \times V_2}{\frac{1}{2} M_{NaB_4O_7 \cdot 10H_2O} \times V_1 \times (V_3 - V_0) } \]

样品中氨的含量：

\[w_N = \frac{c_{HCl} \times (V_3 - V_0) \times M_N}{1000 \times m_s} \times 100\% \]

式中：\(c_{HCl} \) 为 HCl 标准溶液的浓度（mol/L）；\(m_{NaB_4O_7 \cdot 10H_2O} \) 和 \(m_s \) 分别为称取 Na₂B₄O₇·10H₂O 和待测样品的质量（g）；\(P_{NaB_4O_7 \cdot 10H_2O} \) 为 Na₂B₄O₇·10H₂O 的纯度，用质量分数表示；\(V_1 \) 为配制 Na₂B₄O₇·10H₂O 标准溶液的体积（mL）；\(V_2 \) 为移取 Na₂B₄O₇溶液的体积（mL）；\(V_3 \) 和 \(V_0 \) 分别为标注 Na₂B₄O₇溶液和滴定待测样品时消耗 HCl 标准溶液的体积（L）；\(V_3 - V_0 \) 为标注和滴定空白消耗 HCl 标准溶液的体积（mL）；\(M_{NaB_4O_7 \cdot 10H_2O} \) 和 \(M_N \) 分别为 Na₂B₄O₇·10H₂O 和氨原子的摩尔质量（g/mol）；1000 为由 mL 转化为 L 的换算系数。

3 不确定度来源的识别及其分量的评定

测量过程中的不确定度主要来源于称量误差、标准物质纯度、器具误差、环境条件、摩尔质量、人员素质、滴定终点观察及样品均匀性等方面，其中人员素质、滴定终点观察以及样品均匀性等因素很难用技术文件的性能进行不确定度评定，它们的不确定度可以通过测量的重复性实验得以体现。

3.1 硼砂和样品称量的不确定度

硼砂和样品质量（\(m_{NaB_4O_7 \cdot 10H_2O} \) 和 \(m_s \)）的称量均为减量称量，包含净重称量（\(m_{net} \））和总重称量（\(m_{ gross} \））的每一次称重都有随机误差和天平校准带来的不准确度。天平校准本身有两个可能的不确定度来源：灵敏度和校准参数的线性。因称量质量是用同一台天平在很窄范围内进行的，因此灵敏度可以忽略。样品称量 \(m_s \) 的随机误差可以在测量的重复性中体现，而硼砂称量 \(m_{NaB_4O_7 \cdot 10H_2O} \) 的随机误差则在合成重复性中反映。称量均按常规在空气中进行的，因此不考虑浮力修正。其他不确定度分量可以忽略。

Sartorius BS124S 天平的线性误差≤±0.2 mg，重复性≤±0.1 mg，假定为正态分布，则其标准不确定度分别为 0.2/√3 = 0.116 mg 和 0.1/√3 = 0.058 mg。

线性分量和重复性分量均应重复计算两次，产生的标准不确定度为：

\[u(m_1) = \sqrt{2} \times 0.116^2 = 0.164 \text{ mg} \]

\[u(m_2) = \sqrt{2} \times 0.082^2 = 0.082 \text{ mg} \]

则硼砂和样品称量的标准不确定度为：

\[u(m_{NaB_4O_7 \cdot 10H_2O}) = \sqrt{u^2(m_1) + u^2(m_2)} \]

\[= \sqrt{0.164^2 + 0.082^2} = 0.184 \text{ mg} \]

\[u(m_s) = 0.164 \text{ mg} \]

相对标准不确定度为：

\[u_{rel}(m_{NaB_4O_7 \cdot 10H_2O}) = \frac{0.184}{3813.7} = 4.9 \times 10^{-5} \]

\[u_{rel}(m_s) = \frac{0.164}{500} = 3.3 \times 10^{-4} \]

3.2 硼砂纯度的不确定度

供应商标注的 Na₂B₄O₇·10H₂O 的纯度介于 99.5% ~ 100.5%，\(P_{NaB_4O_7 \cdot 10H_2O} = 1.000 \pm 0.005 \)。
假定为矩形分布，则其标准不确定度为：
\[u(P_{Na2B4O_7 \cdot 10H_2O}) = 0.005/\sqrt{3} = 0.0029 \]
相对标准不确定度为：
\[u_{rel}(P_{Na2B4O_7 \cdot 10H_2O}) = \frac{u(P_{Na2B4O_7 \cdot 10H_2O})}{P_{Na2B4O_7 \cdot 10H_2O}} = 0.0029 \]
相对标准不确定度为：
\[0.0029 \quad 1.000 = 2.9 \times 10^{-3} \]

3.3 体积的不确定度
容器瓶、移液管和滴定管的体积主要有三个
不确准度来源：体积校准的不确定度、体积的重复性及溶液配制与使用时温度不一致带来的不确定度。其中移液管体积的重复性可以在标定试验的重复性中体现；滴定管体积的重复性可以在标定
和滴定样品的重复性中体现。Na₂B₄O₇溶液和HCl
溶液是在配制好后立即进行标定，因此V₁、V₂、V₃
和V₄均不受温度的影响。³

3.3.1 容量瓶体积的不确定度 (V₁)
（1）容量瓶校准的不确定度
1 L A 级容量瓶，根据 GB/T 12808—1991
标准规定，其最大允许误差为 ±0.40，允许差可
认为是误差的极限。在有效的生产过程中，其容积
接近于 1 L 的概率大于边界值，因此假定其容积误
差呈三角形分布，其标准不确定度为：
\[u_{V} = 0.40/\sqrt{6} = 0.164 \text{ mL} \]
（2）定容体积重复性的不确定度
1 L 容量瓶进行 11 次重复用二次蒸馏水充满刻度和称量实验，测试结果进行温度校正后，计算
出标准不确定度为：
\[u_{V} = 0.020 \text{ mL} \]
上述两项合成得容量瓶体积的标准不确定度为：
\[u(V₁) = \sqrt{u_{V₁}²(V₁) + u_{V}²(V₁)} = \sqrt{0.164² + 0.020²} = 0.166 \text{ mL} \]
相对标准不确定度为：
\[u_{rel}(V₁) = \frac{u(V₁)}{V₁} = 0.00166 \quad 1000 = 0.017 \times 10^{-4} \]

3.3.2 移液管体积的不确定度 (V₂)
移液管体积 (V₂) 的不确定度只受校准的影响，
根据国家标准，10 mL A 级移液管的最大允许误差为
±0.020，假定为三角形分布，其标准不确定度为：
\[u(V₂) = 0.020/\sqrt{6} = 0.0082 \text{ mL} \]
相对标准不确定度为：
\[u_{rel}(V₂) = \frac{u(V₂)}{V₂} = 0.0082 \quad 10 = 8.2 \times 10^{-4} \]

3.3.3 滴定管体积的不确定度
3.3.3.1 (V₃ - V₀₅) 的不确定度
V₁和V₀₅不受温差的影响，其重复性可在标定
的重复性中体现，因此V₁和V₀₅只受校准的影响。
V₃的平均值为 20.05 mL，按标准 GB/T 12808—91
规定，其最大允许误差为 ±0.05 mL，假定为三角
形分布，其标准不确定度为：
\[u(V₃) = 0.05/\sqrt{6} = 0.021 \text{ mL} \]
V₀₅为 0.05 mL，其最大允许误差为 ±0.01 mL，
则标准不确定度为：
\[u(V₀₅) = 0.01/\sqrt{6} = 0.0041 \text{ mL} \]
V₃和V₀₅不相关，则 (V₃ - V₀₅) 的标准不确定度为：
\[u(V₃ - V₀₅) = \sqrt{ u²(V₃) + u²(V₀₅) } = 0.021² + 0.0041² = 0.022 \text{ mL} \]
相对标准不确定度为：
\[u_{rel}(V₃ - V₀₅) = \frac{u(V₃ - V₀₅)}{V₃ - V₀₅} = 0.0022 \quad 20.00 \quad 1000 = 0.011 \times 10^{-3} \]

3.3.3.2 (V₄ - V₀₄) 的不确定度
（1）滴定管校准的不确定度
滴定样品消耗HCl溶液的体积V₄为 16.05 mL，其最大允许误差为 ±0.05 mL，则标准不确定度为：0.05/\sqrt{6} = 0.021 mL。V₀₄为 0.05 mL，其最大
允许误差为 ±0.01 mL，标准不确定度为：0.01/\sqrt{6} = 0.0041 mL。两项合成的标准不确定度为：
\[u(V₄ - V₀₄) = \sqrt{u²(V₄) + u²(V₀₄)} = 0.021² + 0.0041² \]
（2）温度对滴定体积的影响
HCl标准溶液配制与使用时的温差≤±2°C，
液体的体积膨胀明显大于滴定管的体积膨胀，因此
只考虑液体的体积膨胀。水的体积膨胀系数为
2.1 × 10⁻⁴/°C，温度变化对消耗的HCl标准溶液
V₄和V₀₄产生的体积变化分别为 ±(16.05 × 2 ×
2.1 × 10⁻⁴) = 0.0068 mL 和 ±(0.05 × 2 × 2.1 ×
10⁻⁴) = ±0.00021 mL。假定为矩形分布，则标
准不确定度分别为 0.0068/\sqrt{6} = 0.0040 mL 和
0.00021/\sqrt{6} = 0.000013 mL。两项合成的标准
不确定度为：
\[u(V₄ - V₀₄) = \sqrt{0.0040² + 0.000013²} \]
因此(V₄ - V₀₄)的标准不确定度为：
\[u(V₄ - V₀₄) = \sqrt{ u²(V₄ - V₀₄) + u²(V₄ - V₀₄) } \]
\[= \sqrt{0.021² + 0.0041² + 0.0040² + 0.000013²} \]
\[= 0.022 \text{ mL} \]

— 42 —

All rights reserved. http://www.ykes.ac.cn
相对标准不确定度为：

\[u_{\text{rel}}(V_4 - V_{O3}) = \frac{u(V_4 - V_{O3})}{V_4 - V_{O3}} = 0.022 \frac{16.00}{1.4 \times 10^{-3}} = 1.4 \times 10^{-3} \]

3.4 摩尔质量的不确定度

摩尔质量的不确定度可以通过合成各组成元素的原子量的不确定度得到。Na 和 Na₂B₄O₇·10H₂O 各组成元素的相对原子量及其标准不确定度可以从国际纯粹化学和应用化学联合会（IUPAC）发布的最新版（2005）相对原子量表中查得。如表 1 所示，各元素的标准不确定度按矩形分布求得。

表 1 Na, B, O, H 和 N 的相对原子量的不确定度

<table>
<thead>
<tr>
<th>元素</th>
<th>相对原子量 M</th>
<th>相对标准不确定度</th>
<th>标准不确定度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>22.989770</td>
<td>0.000002</td>
<td>0.0000012</td>
</tr>
<tr>
<td>B</td>
<td>10.811</td>
<td>0.007</td>
<td>0.0041</td>
</tr>
<tr>
<td>O</td>
<td>15.9994</td>
<td>0.0003</td>
<td>0.0018</td>
</tr>
<tr>
<td>H</td>
<td>1.00794</td>
<td>0.00007</td>
<td>0.000041</td>
</tr>
<tr>
<td>N</td>
<td>14.0067</td>
<td>0.0002</td>
<td>0.00012</td>
</tr>
</tbody>
</table>

硼砂分子中同一元素间相对原子量是正相关，而钠原子的标准不确定度为 0.0000012 × 2 = 0.00000042，硼原子为 0.00014 × 4 = 0.00014，氧原子为 0.00018 × 17 = 0.00031，氯原子为 0.0000012 × 20 = 0.00002，M(Na₂B₄O₇·10H₂O) = 381.3721 g/mol。各元素不相关，则硼砂摩尔质量的不确定度为：

\[u(M) = \left(\frac{M}{V_{O3}} \right) + \left(\frac{u(M)}{M} \right) \]

\[= \sqrt{\left(\frac{M}{V_{O3}} \right)^2 + \left(\frac{u(M)}{M} \right)^2} \]

\[= 0.0168 \text{ g/mol} \]

相对标准不确定度为：

\[u_{\text{rel}}(M) = \left(\frac{u(M)}{M} \right) \]

\[= \frac{0.0168}{381.3721} = 4.5 \times 10^{-5} \]

氨摩尔质量的相对标准不确定度为：

\[u_{\text{rel}}(M) = \left(\frac{u(M)}{M} \right) \]

\[= \frac{0.00012}{14.0067} = 8.6 \times 10^{-6} \]

3.5 重复性的不确定度

3.5.1 标定试验重复性的不确定度

按照 1.3 节 HCl 标准溶液浓度的标定方法，对 HCl 溶液的浓度进行 5 次标定，(V₁ - V₀₃) 分别为：20.00, 20.05, 20.00, 20.00, 19.95 mL，平均值为 20.00 mL。由于标定次数相对较少，采用极差法计算标准不确定度。极差 R = 0.10 mL，极差系数 \(C = 2.33 \)，则标定重复性的标准不确定度为：

\[u(\text{rep}) = \frac{R}{\sqrt{n} \times C} = 0.020 \text{ mL} \]

相对标准不确定度为：

\[u_{\text{rel}}(\text{rep}) = \left(\frac{u(\text{rep})}{\text{rep}} \right) \]

\[= \frac{0.020}{20.00} = 1.0 \times 10^{-3} \]

3.5.2 滴定样品重复性的不确定度

按测定方法对某土壤样品重复滴定 12 次，(V₁ - V₀₃) 分别为：16.00, 16.20, 15.90, 16.00, 15.95, 16.10, 15.85, 16.00, 15.95, 16.00, 16.05, 16.00 mL，平均值为 16.00 mL，标准偏差 \(s = 0.091 \text{ mL} \)，则滴定重复性的标准不确定度为：

\[u(\text{rep}) = \frac{s}{\sqrt{n}} = 0.091 \sqrt{12} = 0.27 \text{ mL} \]

相对标准不确定度为：

\[u_{\text{rel}}(\text{rep}) = \left(\frac{u(\text{rep})}{\text{rep}} \right) \]

\[= \frac{0.091}{16.00} = 1.7 \times 10^{-3} \]

综合以上评定过程，相关步骤的量值及不确定度如表 2。

表 2 量值及不确定度

<table>
<thead>
<tr>
<th>参数</th>
<th>量值</th>
<th>标准不确定度</th>
<th>相对标准不确定度</th>
</tr>
</thead>
<tbody>
<tr>
<td>m₁</td>
<td>500 mg</td>
<td>0.164 mg</td>
<td>3.3 \times 10^{-4}</td>
</tr>
<tr>
<td>m₂</td>
<td>3813.7 mg</td>
<td>0.184 mg</td>
<td>4.9 \times 10^{-5}</td>
</tr>
<tr>
<td>V₁</td>
<td>1000 mL</td>
<td>0.0022 mL</td>
<td>1.7 \times 10^{-4}</td>
</tr>
<tr>
<td>V₂</td>
<td>10 mL</td>
<td>0.0082 mL</td>
<td>8.2 \times 10^{-4}</td>
</tr>
<tr>
<td>V₃</td>
<td>20.00 mL</td>
<td>0.0022 mL</td>
<td>1.1 \times 10^{-3}</td>
</tr>
<tr>
<td>Mₙ</td>
<td>14.0067 g/mol</td>
<td>0.00012 g/mol</td>
<td>8.6 \times 10^{-6}</td>
</tr>
<tr>
<td>rep₁</td>
<td>20 mL</td>
<td>0.020 mL</td>
<td>1.0 \times 10^{-3}</td>
</tr>
<tr>
<td>rep₂</td>
<td>16 mL</td>
<td>0.027 mL</td>
<td>1.7 \times 10^{-3}</td>
</tr>
</tbody>
</table>

4 标准不确定度的合成

HCl 浓度：

\[c_{\text{HCl}} = \frac{m_{\text{Na₂B₄O₇·10H₂O}} \times P_{\text{Na₂B₄O₇·10H₂O}} \times V₂}{\frac{1}{2}M_{\text{Na₂B₄O₇·10H₂O}} \times V₁ - (V₁ - V₀₃)} \]

\[\times \frac{3813.7 \times 1.0 \times 10}{2} \times 381.3721 \times 1000 \times (20.05 - 0.05) \]

\[= 0.010 \text{ mol/L} \]
5 扩展不确定度
5.1 当置信概率 p = 95% 时，包含因子 k 近似等于 2，扩展不确定度为：

\[u(v) = k \times u(w) = 2 \times 0.0019 = 0.0038 \% \] 修约为 0.004\%

6 不确定度的报告

半微量凯氏法测定该土壤样品中氮的结果为：

0.448% ± 0.004% （包含因子 k = 2）

7 参考文献
[3] GB 7848—87，森林土壤全氮的测定 [S]。

ICP – MS 实践指南
李金英 姚继军 等译

《ICP – MS 实践指南》是美国 Robert Thomas 专著《 Practical Guide to ICP – MS》的中译本。本书由李金英、姚继军等译，原子能出版社 2007 年 2 月出版。

《ICP – MS 实践指南》全书共分 20 章； ICP – MS 概述，包括 ICP – MS 的工作原理和组成系统的基本部件；简要概述离子的原理——利用高温等离子体等离子体；等离子体样品引入系统——等离子体样品由固液变为适合电离的粒子；等离子体；等离子体电子形成的原理；等离子体：离子焦聚系统——通过静电作用在轴向和垂直方向将待测离子电子从接口传输至质量分离的装置；质量分析器——将离子按照其质量比（m/z）进行分离的装置，包括四极杆、双聚焦磁性磁体、飞行器、磁体/反应室四种质量分离技术；检测器，包括通道式电子倍增器和法拉第杯；高灵敏度电子倍增器；峰值测量方法；定量方法，包括外标法、标准加入法及同位素比法和内标法；概述各种干扰，包括现场干扰、基体干扰以及消除或抑制各种干扰的方法；检测问题。影响 ICP – MS 分析结果的主要因素包括采样、样品制备、处理、分解过程、试剂的筛选，样品制备装置、实验装置及使用的仪器和方法；ICP – MS 系统各个部件的日常维护；进样附件的选择，包括激光烧蚀进样系统、流动注射分析系统、电热蒸发生进样器、电热蒸发生进样器、去电离装置、直接激光分析器和色谱分离装置等； ICP – MS 在环境、生物医学、地球化学、半导体工业、核工业及其他领域如冶金、石油化学、食品分析中的应用；ICP – MS 与其他原子谱技术在检测、分析工作范围，样品处理、常见干扰，实用性和购买和运行成本，相关消耗品方面内容的比较；从分析性能、检测能力、精密度、准确度、动态范围、技术支持及相关售后服务等一些重要方面考虑如何选择 ICP – MS。