NORTHWESTERN GEOLOGY

南天山北缘白土塘蛇绿混杂岩构造环境

职荣军,樊双虎,陈淑娥,袁伟,芮婷,王江伟,刘明,毛友亮 (长安大学地球科学与资源学院,陕西西安 710054)

摘 要:新疆南天山北缘白土塘出露一部分蛇绿混杂岩,为了解其中超基性-基性岩的形成环境,笔者主要利用 地球化学的研究方法对该区的9个样品进行了测试。通过地球化学研究分析,认为本区的蛇纹岩以低 SiO₂、 TiO₂、CaO、K₂O、Na₂O,高 MgO、Al₂O₃为特征,富集相容元素 Cr、Co、Ni,贫不相容元素,同时大离子 亲石元素含量较低,整体特征类似于大洋二辉橄榄岩,具有地幔残留物的特征。对玄武岩的地球化学研究表明, 其以富 TiO₂、MgO,贫 Al₂O₃、K₂O,且 Na₂O>K₂O 为特征;与 MORB 相比较,明显亏损 Nb、Ta;与原始 地幔相比较,具有类似于 N-MORB 的亏损地慢特征;主、微量元素的地球化学特征显示岩石应形成于类似洋中 脊的构造环境,岩浆源于亏损地幔区。

Tectonic Setting of the Baitutang Ophiolite at the Northern Margin of South Tianshan Belt

ZHI Rong-jun, FAN Shuang-hu, CHEN Shu-e, YUAN Wei, RUI Ting, WANG Jiang-wei, LIU-Ming, MAO You-liang

(College of Earth sciences and Land Resources, Chang' an University, Xi' an 710054, China)

Abstract: There exposed part of the Ophiolitic Melange in Baitutang, the north of the South Tianshan in Xinjiang. To understand the ultrabasic rocks forming environment, this paper focuses on the 9 samples of this area are tested by the study of geochemical method. Research and analysis of the geochemical results that the serpentinite in the area with low SiO₂, TiO₂, CaO, K₂O, Na₂O, MgO, Al₂O₃ for the characteristics, with high concentration of compatible elements Cr, Co, and Ni, depleted in incompatible elements, and large ion lithophile element content is low, the overall features similar to the Ocean Iherzolite, features representing the mantleresidue. The basalts possess high TiO₂ and MgO contents, not only low Al₂O₃ and K₂O, but also Na₂O>K₂O. Compared with MORB, the elements of Nb, Ta apparent are loss. Compared with the primitive mantle, with slow features similar to the N-MORB's losses, The geochemical characteristics of the main elements and trace elements show that rock should be formed in the tectonic environment similar to mid-ocean ridge, and the magma derived from depleted mantle zone.

Key words: South Tianshan; ophiolitic melange; geochenistry; tectonic setting

收稿日期: 2013-04-12; 修回日期: 2013-07-12

基金项目:中国地质调查项目"新疆1:5万马兰、新井子等四幅区调"(1212011120465)

作者简介: 职荣军(1988-), 男,河南焦作人,硕士研究生,主要从事构造地质学和区域地质调查工作。E-mail: zrj027 @163.com 中国天山造山带横亘于准葛尔和塔里木板块之 间,是由准葛尔板块和塔里木板块长期相互作用而 形成的造山带,长期受到地学界的广泛关注与研 究,并取得了重大的进展。尽管如此,古生代天山 造山作用的性质、演化时限与过程,及动力学机制 仍然存在很大的争议。现有研究表明,天山造山带 以中天山南缘断裂和中天山北缘断裂可以将天山划 分为南天山、中天山和北天山。中天山南缘断裂西 延接吉尔吉斯斯坦的尼古拉耶夫线,向东经哈尔克 山北坡的长阿吾子、巴伦台乌瓦门、库米什榆树沟 直至东天山南部,被阿尔金断裂截断。该带出露了 大量的超镁铁-镁铁质岩石,是区域构造格局及演 化过程的客观记录,是研究伊犁板块与南天山地块 相互作用的关键因素之一。

已有的研究表明:在南天山北缘自东而西沿甘 肃北山的红柳河(周国庆,1988)、硫磺山—铜花 山(吴文奎等,1992)、榆树沟(董云鹏等,2001) 一带分布志留纪—泥盆纪的蛇绿混杂岩。白土塘蛇 绿混杂带是南天山北缘众多的超镁铁质-镁铁质岩 体之一,是一个较为特殊的地质体。该地质体由多 个喷发韵律组成,熔岩和火山碎屑岩、凝灰岩呈互 层产出,局部夹硅质岩和正常沉积的泥质岩。由于 这套地层发生了多期变形,岩石发生了变质和片理 化,仅仅能够根据局部保留的变余层理构造证实这 套火山岩由多期火山喷发形成,但确切的火山喷发 旋回次数已经难以恢复。笔者在地质填图的基础 上,对工作区内白土塘蛇绿混杂岩进行了详细的野 外工作和室内研究。重点对白土塘蛇绿混杂岩进行 地球化学研究,探讨其形成环境与构造意义。

1 大地构造背景及区域地质

榆树沟蛇绿混杂岩带位于天山缝合带南缘,是 天山众多蛇绿混杂岩带中位置较靠南的一条,年龄 也相对较轻,应该为伊犁微板块与塔里木板块之间 的最后缝合遗迹。按照肖序常(1992)的划分,该 区的构造单元属于南天山早一中古生代活动大陆边 缘段的洋壳海沟板片的南缘。现有研究表明:榆树 沟蛇绿混杂岩有关的洋盆总体向南西消减,工作区 位于其上盘。

研究区位于新疆托克逊与和硕县交界的南天山 榆树沟南侧,铜花山西侧(图1)。该混杂岩带呈 北西-南东向展布,北邻库米什中-新生界断陷盆 地,东端被华力西期红色钾长花岗岩体侵入。该蛇 绿混杂带以基性熔岩为主,混杂的岩块基本是蛇绿 岩的组成部分,其中夹有少量千枚岩、凝灰岩岩 块,岩块呈逆冲状组成蛇绿混杂带。主要由蛇纹 岩、片理化玄武岩、堆晶岩、辉长岩、硅质岩,以 及少量的千枚岩和凝灰岩组成。各构造岩块大小不 等,多发生片理化或糜棱岩化,局部表现为碎裂岩 化。该带内部岩片与岩片之间以及岩片内部构造作 用强烈,岩石普遍发生绿片岩化、糜棱岩化和碎裂 岩化,蛇绿岩原有的基本层序已不复存在,均被构 造作用所肢解,成为了混杂堆积的岩块。它们或以 单个岩块,或以岩石组合不同规模的产于混杂岩带 之中,它们之间无热接触变质现象,均为构造接触 关系,局部可见一些胶结物,但显然是经构造作用 改造后胶结的。局部残存的接触关系仍然比较清 楚。例如,变质玄武岩与硅质岩的接触关系及蛇纹 岩、辉长岩与糜棱岩化玄武岩的接触关系等。

2 岩石学特征

2.1 蛇纹岩

蛇纹岩多位于断层的上盘,呈透镜状、角砾 状、片状产出;岩石一般呈暗灰绿色、墨绿色等, 色泽不均匀,具滑感,纤维状、鳞片状变晶结构, 块状构造,表面局部可见少量蛇纹石化石棉;岩石 主要由蚀变矿物蛇纹石组成,纤维状、叶片状,部 分具有定向排列,粒度较细小,含量占体积分数的 95%以上,其次有少量磁铁矿以自形、他形粒状呈 侵染状、细粒状不均匀分布在岩石中,其含量 <2%,同时还有少量方解石分布在其中。

2.2 玄武岩

在研究区出露面积相对较大,岩石为灰黑色、 青灰色、浅绿色,粒柱状变晶结构,片状构造,由 于受到了后期构造运动的强烈的改变,岩石发生了 片理化、糜棱岩化等现象,未见枕状构造;岩石由 斜长石(约30%)、角闪石(60%~65%)以及微 量白钛矿组成。角闪石为深黄-黄绿色,平行定向 分布,片状构造发育;斜长石为长条状为多呈椭圆 状碎斑,内部重结晶,部分呈碎基,多<0.3 mm, 呈透镜体条带平行定向分布,泥化、隐晶帘石化 较强。

图 1 研究区地质间图

Fig. 1 Geological sketch map of research area
1. 第四系冲洪积物; 2. 阿拉塔格组第三岩性段; 3. 阿拉塔格组第二岩性段砂岩; 4. 中泥盆统阿拉塔格组第二岩性段灰岩; 5. 阿拉塔格组第二岩性段; 6. 阿拉塔格组第一岩性段; 7. 志留系第二岩性段;
8. 志留系第一岩性段; 9. 砾岩透镜体; 10. 灰岩透镜体; 11. 蛇纹岩; 12. 辉绿岩; 13. 花岗斑岩;
14. 断层; 15. 走滑断层; 16. 采样位置

2.3 硅质岩

硅质岩为黑色、褐红色,隐晶质结构,块状构 造;出露面积较小,但沉积层理保存较好;镜下样 品主要由粒度极为细小的隐晶质石英所组成,其次 有少量的细针状纤闪石及显微鳞片状黑云母均匀分 布,含量较少。

综上所述,白土塘蛇绿混杂岩从底部超镁铁质 岩到顶部硅质岩、火山碎屑岩的空间分布特征与一 个发育完整的蛇绿岩具有可比性,对本区的蛇绿混 杂岩进行复原,可以看出它是一个完整的蛇绿岩 组合。

考虑到变质作用对大离子亲石元素 (LILE) 地球化学行为可能存在一定的影响,笔者主要利用 非活动性的高场强元素(HFSE)及 Sr 同位素组 成探讨岩石的成因及形成的构造背景。主要选取变 质程度较低的变质橄榄岩和变质玄武岩进行测试, 测试结果见表 1。

3 蛇纹岩地球化学

本区的蛇纹岩主量元素分析结果中由于样品烧 失量很大,将样品数据调整后结果见表 1。主量元 素显示蛇纹岩 ω (SiO₂)为40.44%~44.76%,平 均为43.42%; ω (Al₂O₃)为2.47%~6.67%, 平均为3.89%,含量变化较大,反映的是地幔岩在 熔融过程 Al 被融失; ω (TiO₂)为0.01%~0.07%,

表 1 南天山白土塘变质超基性-基性岩主元素 (%)、稀土和微量元素 (×10⁻⁶)分析数据表

Tab. 1 Analysis of major element, trace and rare element of metamorphic ultrabasi-basic rock of Baitutang, southern Tianshan

岩石名称		蛇纟	文 岩				玄 武	式 岩		
样品	D1907 /3YQ	D1907 /4YQ	D5809 /1 YQ	D6414 /1YQ	D6417 /1 YQ	D6418 /1YQ	D6640 /3YQ	D6641 /1Y Q	D6611 /1YQ	D6644 /1 YQ
SiO ₂	44.49	40.44	44.76	44.01	50.04	49.76	50.04	51.88	51.29	50.62
Al ₂ O ₃	3.45	6.67	2.47	2.96	14.67	15.88	14.09	13.29	14.96	15.91
Fe_2O_3	7.70	10.08	7.43	8.17	4.35	3.74	3.23	3.35	3.00	5.37
FeO	3.73	3.13	2.37	2.38	6.39	6.81	8.68	8.39	8.73	5.90
CaO	0.97	0.10	0.13	0.09	13.70	12.40	11.29	11.03	8.88	9.42
MgO	39.29	39.29	42.62	42.18	6.54	7.06	8.15	7.06	6.44	6.72
K_2O	0.02	0.06	0.04	0.02	0.38	0.22	0.10	0.12	0.43	0.58
Na ₂ O	0.14	0.03	0.04	0.04	2.76	2.84	2.59	3.24	3.94	3.74
TiO ₂	0.07	0.05	0.01	0.04	0.92	1.05	1.46	1.33	1.88	1.34
P_2O_5	0.02	0.02	0.02	0.00	0.07	0.08	0.14	0.12	0.26	0.19
MnO	0.11	0.13	0.12	0.11	0.16	0.17	0.23	0.19	0.19	0.20
La	1.02	0.56	0.36	0.31	2.22	2.36	3.97	3.54	10.27	8.24
Ce	1.89	1.11	0.63	0.56	6.43	7.32	11.22	9.87	25.72	19.39
Pr	0.21	0.12	0.07	0.06	1.05	1.17	1.75	1.56	3.34	2.55
Nd	0.78	0.52	0.25	0.25	5.81	6.60	9.56	8.34	15.77	12.09
Sm	0.17	0.11	0.06	0.05	1.98	2.17	3.04	2.69	4.08	3.22
Eu	0.07	0.05	0.03	0.03	0.77	0.84	1.06	1.01	1.42	1.19
Gd	0.23	0.15	0.08	0.09	2.90	3.16	4.20	3.76	4.81	4.18
Tb	0.04	0.02	0.01	0.01	0.51	0.57	0.72	0.65	0.73	0.66
Dy	0.21	0.11	0.07	0.07	3.51	3.87	4.77	4.37	4.39	4.41
Ho	0.05	0.02	0.02	0.02	0.76	0.84	1.01	0.94	0.86	0.91
Er	0.13	0.08	0.05	0.05	2.21	2.48	2.88	2.69	2.35	2.66
Tm	0.02	0.01	0.01	0.01	0.32	0.35	0.40	0.38	0.32	0.36
Yb	0.15	0.07	0.05	0.05	2.09	2.31	2.65	2.58	2.05	2.42
Lu	0.03	0.02	0.01	0.01	0.39	0.42	0.49	0.47	0.35	0.44
Ba	7.14	8.72	11.43	8.27	37.05	26.25	23.61	23.68	103.80	153.70
Rb	2.16	4.65	1.69	1.40	9.80	5.55	2.99	2.82	13.37	14.68
Sr	22.80	5.80	6.65	5.70	156.00	184.60	160.70	171.40	200.30	220.50
Y	1.27	0.64	0.42	0.45	20.26	21.87	26.41	24.67	21.56	24.34
Zr	6.09	2.94	1.08	1.19	56.64	63.87	89.50	78.59	110.40	86.11
Nb	0.33	0.22	0.16	0.21	1.24	1.31	3.66	3.18	10.26	7.85
Th	0.11	0.21	0.12	0.10	0.21	0.19	0.33	0.33	1.81	1.44
Ni	1529.00	1580.00	928.00	954.00	41.24	50.87	57.41	41.19	45.38	41.55
Cr	3019.00	6217.00	2564.00	2375.00	253.50	259.70	263.50	150.60	168.30	143.00
Hf	0.14	0.08	0.03	0.03	1.51	1.73	2.42	2.15	2.86	2.31
Sc	14.76	14.62	10.98	9.12	42.36	45.38	39.86	44.35	18.28	34.82
Ta	0.02	0.02	0.03	0.07	0.10	0.11	0.26	0.21	0.66	0.45
Со	102.90	125.60	107.20	114.60	53.44	42.06	47.25	50.33	40.14	45.55

注: 表中数据均由宜昌地矿所分析测试。

平均为 0.04%; ω (CaO) 为 0.09%~0.97%, 平 均为 0.32%,含量较低; ω (MgO) 为 39.29%~ 42.62%,平均为 40.85%; Mg[#] = 100, Mg/ (Mg+Fe²⁺)为 76.31~82.47,平均为 79.67,属 镁质超基性岩。 ω (Na₂O)为 0.03%~0.14%, 平均为 0.06%; ω (K₂O)为 0.02%~0.06%,平 均为 0.04%, 2 者亏损。球粒陨石标准化的蛇纹岩 稀土元素配分曲线(图 2)显示左端轻稀土呈明显 下降趋势,右侧重稀土相对平坦,微微翘起,整体 表现为明显轻稀土富集型的"U"形分布形态。这 种稀土分布形态被认为是亏损的残余地幔岩、蛇绿 岩、造山带地幔橄榄岩和地幔包体最常见的稀土分 布样式 (Frey, 1984)。

综上所述,蛇纹岩主量元素表现为低 SiO₂、 TiO₂、CaO、K₂O、Na₂O, 高 Al₂O₃、MgO 特 征,总体上类似于大洋二辉橄榄岩(69件样品平 均值 SiO₂ = 45.99%, TiO₂ = 0.16%, Al₂O₃ = 3.47%, CaO = 2.26%, MgO = 38.63%Dmitriev, 1975)。本区蛇纹岩的稀土元素分布模 式为 LREE 富集型, REE 含量是球粒陨石的 0.5 ~1.5倍。这种情况可能是地幔交代作用的结果, 也有可能是原岩中富含橄榄石。对微量元素的研究 表明大离子亲石元素: Ba 含量为 7.14×10⁻⁶~ 11.43×10⁻⁶、Rb含量为1.40×10⁻⁶~4.65×10⁻⁶和 Sr含量为 5.70×10⁻⁶~22.8×10⁻⁶,含量较低,类 似于滇西横断山区的蛇纹岩,代表了地幔残留物特 征。同时蛇纹岩中富集相容元素 Cr 含量为 2 375× 10⁻⁶~6 217×10⁻⁶、Co 含量为 102.9×10⁻⁶~125.6 ×10⁻⁶、Ni含量为927.8×10⁻⁶~1580×10⁻⁶,具 贫不相容元素的特征,与世界典型蛇绿岩超镁铁单 元岩石一致。

4 玄武岩岩石地球化学

4.1 岩石化学特征

研究区蛇绿岩中的玄武岩呈无根岩块状逆冲侵 位于混杂岩带中,以断层或强剪切变形基质为界, 与蛇纹岩或其他岩块相接触。其岩石化学分析结果 及特征参数见表 1。MgO (MgO 为 6.44% ~ 8.15%,平均为 7.00%)和 TFeO (10.17% ~ 11.58%,平均为 10.93%)含量较高。在 Si-Mg 图中,样品均投在了拉斑玄武岩区(图3)。Mg[#]为43.13~55.87,平均为52.05,低于原始岩浆镁 值范围(68~75,Pearce,1984),这说明了研究 区的玄武岩经过了一定程度的演化。

图 3 岩石分类 Si-Mg 图解

Fig. 3 Classification of rocks from Baitutang

4.2 主量元素地球化学特征

片理化变质玄武岩主量元素分析结果中,由于 部分样品蚀变较强,对样品进行处理后结果见表 1。处理过程包括对烧失量以及 CO₂的处理,这样 可以认为处理后的主量元素的含量基本是原岩的含 量值。

主量元素显示玄武岩中 SiO₂含量为 49.76%~ 51.88%, 平均为 50.59%, 高于正常洋中脊玄武 岩 SiO₂ 的平均值 48.77% (Scaiilling, 1983)。 MgO含量为 5.54%~8.15%, 平均为 6.78%, 较 为接近现代大西洋洋脊玄武岩平均值 6.56% (Scaiilling, 1983)。Al₂O₃含量变化范围较大,为 13.29%~15.91%, 平均为14.85%, 较为接近大 西洋、太平洋和印度洋中脊拉斑玄武岩的 Al₂O₃平 均含量(分别为15.6%、14.78%、15.15%, Melson, 1976), 明显区别于岛弧拉板玄武岩 16% (Jakes and White, 1972) 和板内溢流玄武岩 17.08% (Wilson, 1989) 的高 Al₂O₃含量特征。 一般,洋岛拉斑玄武岩和大陆溢流玄武岩 TiO2含 量平均分别为 2.63% 和 1.0% (Wilson, 1989), 岛弧拉斑玄武岩以低 TiO₂ (0.8%) 为特征 (Jakes and White, 1972)。研究区玄武岩 TiO2变 化为 0.92% ~ 2.20%, 平均为 1.46%。这种高 TiO₂特征明显区别于岛弧和活动大陆边缘玄武岩 低 TiO₂ (<1.25%, Condie, 1989)的特征, 较 接近 MORB 平均值 1.5%, 与东太平洋洋隆的 TiO₂值 (1.77%, Melson, 1976)相当。此外, 研究区玄武岩 Mg[#]为 0.53~0.60, 平均为 0.58, 低于原始岩浆镁值范围 (68~75),这说明了研究 区的玄武岩经过了一定程度的演化。

综上所述,研究区变质玄武岩总体以富 TiO₂ (0.92%~2.20%)、MgO (5.54%~8.15%)贫 Al₂O₃ (13.29%~15.91%)、K₂O (0.10%~ 0.58%),且 ω (Na₂O) $\geq \omega$ (K₂O) 为特征,明 显区别于岛弧拉斑玄武岩、洋岛拉斑玄武岩和板内 玄武岩,与洋中脊玄武岩相比较接近,类似于 MORB 型岩石。

4.3 稀土和微量元素地球化学特征

研究区玄武岩样品的 Σ REE 中等,变化在 30.94×10⁻⁶~76.45×10⁻⁶,平均为49.49×10⁻⁶。 稀土元素分布模式图(图4)上出现的2种类型: 轻稀土亏损型(A类)和轻稀土富集型(B类)。

Fig. 4 REE distribution patterns of basalts

A 类岩石包括 D6417/1、D6418/1、D6640/3、 D6641/1,属于轻稀土亏损型,配分型式表现为轻 稀土端向左倾斜,轻重稀土分异不明显,LR/HR 值平均为 0.62,(La/Yb)_N平均为 0.83,(Ce/Yb)_N 平均为 0.93,Eu 异常不明显,δEu 平均为 0.96, 微弱的 Eu 负异常,说明斜长石结晶分离作用不明 显。球粒陨石标准化的稀土元素配分曲线表现为轻 稀土亏损型(图 4),稀土配分模式与洋中脊拉斑 玄武岩的配分曲线相似。

B 类岩石包括 D6611/1 和 D6644/1,属于轻稀 土富集型,它们的玄武岩稀土总量较高, Σ REE 分别为 76.45×10⁻⁶和 62.73×10⁻⁶。LR/HR 为 1.62 和 1.16, La_N/Yb_N 为 3.37 和 2.30, 说明本 类岩石轻重稀土分馏程度不高。Ce_N/Yb_N 为 3.24 和 2.07, Eu 异常不明显, δEu 为 0.98 和 0.99, 说明斜长石结晶分离结晶作用不明显。在配分模式 图中轻稀土呈向右倾斜型。球粒陨石标准化的稀土 元素配分曲线(图 4)为轻稀土富集型的分配形 式,具富集型洋中脊玄武岩(E-MORB)的特点。

在 MORB 标准化的微量元素蛛网图(图 5) 上,样品 D6417/1 和 D6418/1 明显富集大离子亲 石元素,以高场强元素不分异并低于 MORB 的参 考线(=1)为特征,岩石明显亏损 Nb、Ta,这 说明本类岩石来源于比 MORB 更亏损的亏损地幔 源区。一般与俯冲带有关的基性火山岩具有明显的 Nb、Ta 亏损的特征,另一方面由于受到俯冲带流 体交代影响,具有活动性元素 Sr、K、Ru 富集和 Ba以及不相容元素的适当富集(Sun and McDonugh, 1989)。但是,该类玄武岩除了 Nb、 Ta 亏损之外,不显其他与俯冲带有关玄武岩的特 点,据此推断该类玄武岩是来源于强烈亏损的地幔 部分熔融形成的大洋中脊玄武岩。样品 D6640/3、 D6641/1 为强不相容元素弱富集型的分配形式,以 微弱富集大离子亲石元素、高场强元素 (HFSE) 不分异,且基本沿着 MORB 的参考线(=1)为特 征分布,是典型的洋中脊玄武岩的分配曲线。说明 该类岩石为洋中脊玄武岩,来源类似于 N-MORB 的亏损地幔端元。样品 D6611/1、D6644/1 为强不 相容元素富集型的分配形式, 表现为富集大离子亲 石元素, 微弱富集非活动性元素 Ta、Nb, 高场强

元素微弱分异,并接近 MORB 的参考线(=1)为 特征,同时有洋岛玄武岩微量元素标准化蛛网图隆 起的分布特征,表现为同时具有 N-MORB 和 E-MORB 玄武岩的特征,显示岩浆源区并非单一的 MORB,可能是由地幔不均与混合演化而来的。 总的来说,该类玄武岩特征非常类似于洋中脊过渡 类型的玄武岩。

综上所述,A 类岩石稀土分配样式为轻稀土 亏损型,微量元素 MORB 标准化后的蛛网图为强 不相容元素弱富集型的分配形式,岩浆源区经过强 烈的 MORB 萃取,岩石来源于亏损地幔,具有 N-MORB 的特征;B 类岩石轻稀土富集型的分配形 式,具有 E-MORB 型岩石的特征。微量元素标准 化后的蛛网图为强不相容元素富集型的分配形式, 有 E-MORB 隆起的特征。

结合主量元素、微量元素等特征分析认为:白 土塘蛇绿混杂岩中的蛇纹岩、玄武岩中主量元素、 微量元素的含量特征、曲线模式符合典型蛇绿岩的 岩石地球化学特征。蛇纹岩为亏损地幔岩,玄武岩 源自亏损地幔源区。玄武岩多为洋中脊玄武岩,同 时出现了不同构造环境的岩石,它们可能是受构造 作用混杂堆积而来。

高场强元素 Zr/Nb、Nb/La 和 Hf/Ta 是有效的 环境判别指标,N-MORB 的 Zr/Nb 值多大于 30,P-MORB 和洋岛玄武岩的 Zr/Nb 值约为 10(Wilson, 1989),研究区的玄武岩的 Zr/Nb 值变化为 11~49, 平均为 28。Nb/La 值(0.55~0.99)和 Hf/Ta(5.1 ~16.0)值均类似于 N-MORB(Nb/La<1、Hf/Ta 大于 5,Condie,1989)。

不活动元素协变关系是构造环境判别的有效方 法。在 2Nb-Zr/4-Y(图 6a)和 Hf/3-Th-Ta(图 6b)判别图解中,样品投在正常洋中脊玄武岩区 和富集的大洋中脊玄武岩与火山弧玄武岩的边缘 区。这说明该类岩石的岩浆源区应当是由亏损地幔 与少量富集地幔混合而来的。一般来说,典型的大 洋中脊玄武岩都是由亏损地幔形成的,而研究区的 洋中脊玄武岩却出现了不均匀的地幔混合作用,出 现这种情况,笔者认为研究区玄武岩并非一次喷发 形成,是多期次喷发的。综合火山岩组合、岩石化 学和地球化学特征,本区蛇绿岩组合属于南天山大 洋壳残片,在洋壳俯冲过程中,混入了少量火山弧 玄武岩成分。

Fig. 6 Classification of rocks from Baitutang AI. 板内碱性玄武岩; AII. 板内碱性玄武岩和板内拉斑玄武岩; B. E-MORB; C. 板内拉斑玄武岩和火山弧玄武岩; D. N-MORB和火山弧玄武岩; b. Hf-Th-Ta 图解(Wood, 1980); A. N-MORB; B. E-MORB和板内拉斑玄武岩; C. 板内碱性玄武岩; D. 岛弧玄武岩

5 构造意义

对于蛇绿岩的形成时代,笔者使用王润三等 (1998) 在榆树沟蛇绿岩中获得的年龄(440±18) Ma,近似认为是研究区蛇绿岩的形成时代。王润 三等(1998)利用锆石 U-Pb 同位素不一致线和谐 和线获得了2组年龄,上交点年龄为(440±18) Ma,下交点年龄为(364±5)Ma,上交点年龄 (440±18)Ma 与郝杰等(1993)在同一构造带西 延的长阿吾子蛇绿岩获得的辉石³⁹Ar-⁴⁰Ar 坪年龄

2013 年

439 Ma 一致,与杨经绥等(2011)完成的单颗粒 锆石的 SHRIMP U-Pb 和 LA-ICP-MS 2 种方法定 年获得的榆树沟蛇绿岩组合中的斜长花岗岩和斜长 岩的年龄 439.3±1.8 Ma 和 435.1±2.8 Ma 也一 致,近似代表了本区蛇绿岩的形成年龄。由此认为 洋盆的形成时代为早古生代。

通过分析研究区白土塘蛇绿混杂岩带地质体特 征和岩石地球化学特征,认为研究区的蛇绿岩形成 于早志留世,代表的是南天山洋壳残片,混杂堆积 了来自与俯冲带有关构造环境的岩片。本次工作发 现了典型的洋中脊玄武岩,同时说明南天山洋其实 是"有限洋盆"。

这为研究南天山蛇绿混杂岩和构造演化提供了 新的信息。

6 结论

(1)通过对白土塘火山岩的研究发现,该地区火山岩具有拉斑玄武岩的特征。结合主量元素、微量元素等特征分析认为:白土塘蛇绿混杂岩中的蛇纹岩、玄武岩中主量元素、微量元素的含量特征、曲线模式符合典型蛇绿岩的岩石地球化学特征。蛇纹岩为亏损地幔岩,玄武岩源自亏损地幔源区。玄武岩多为洋中脊玄武岩,同时出现了不同构造环境的岩石,它们可能是受构造作用混杂堆积而来。

(2) 从构造环境判别图得出,研究区玄武岩的 形成环境为 N-MORB 和 E-MORB,同时混入一部 分火山弧环境的玄武岩。这说明该类岩石的岩浆源 区应当是由亏损地幔与富集地幔混合而来的。故研 究区玄武岩并非一次喷发形成,是多期次喷发的。 而火山弧玄武岩则是构造作用过程中混杂堆积了来 自与俯冲带有关构造环境的岩片。

(3)通过对白土塘地区的研究,发现了典型的 洋中脊玄武岩,说明了南天山洋其实是"有限洋 盆",为今后南天山蛇绿混杂岩和构造演化的研究 提供了重要信息。

参考文献 (References):

董云鹏,王润三,周鼎武.南天山北缘榆树沟变质基性-超 基性岩的地球化学及其成因机制[J].地球化学, 2001,30(6):559-568.

- Dong YP, Wang RS, Zhou DW. Geochemistry and genesis of meta-mafic-ultramafic rocks from Yushugou region, north margin of the South Tianshan tectonic belt, western China [J]. Geochimica, 2001, 30 (6): 559-568.
- 董云鹏,周鼎武,张国伟,等.中天山南缘乌瓦门蛇绿岩 形成构造环境[J].岩石学报,2005,21(1):37-44.
- Dong YP, Zhou DW, Zhang GW, et al. Tectonic setting of the Wuwamen ophiolite at the southern margin of Middle Tianshan Belt [J]. Acta Petrologica Sinic, 2005, 21 (1): 37-44.
- 高俊.西南天山榴辉岩的发现及其大地构造意义[J].科学 通报,1997,42 (7):737-739.
- Gao J. Discovery of eclogite and its geological significance in southwestern Tianshan [J]. Chinese Science Bulletin, 1997, 42 (7): 737-739.
- 高俊,汤耀庆,赵民,等.新疆南天山蛇绿岩的地质地球 化学特征及形成环境初探[J].岩石学报,1995,11 (增刊): 85-97.
- Gao J, Tang YQ, Zhao M, et al. The preliminary studies on tectonic environment of formation and gelolgical and geochemical characters of ophiolites, South Tianshan Mountains, Xinjiang [J]. Acta Petrologica Sinica, 1995, 11 (Sup.): 85-97.
- 郭召杰,马瑞士,郭令智,等.新疆东部三条蛇绿混杂岩带的比较研究[J].地质评论,1993,39(3): 236-247.
- Guo ZJ, Ma RS, Guo LZ, et al. A comparatives study on three ophiolitic mélange belis in eastern Xinjiang [J]. Geological Review, 1993, 39 (3): 236-247.
- 郝杰,刘小汉.南天山蛇绿混杂岩形成时代及大地构造意 义[J].地质科学,1993,28 (1):93-95.
- Hao J, Liu XH. Ophiolite mélange time and tectonic evolutional model in South Tianshan area [J]. Scientia Geologica Sinica, 1993, 28 (1): 93-95.
- 姜常义,杨复,吴文奎,等.库米什地区火山岩岩石地球 化学特征及大地构造环境[J].西安地质学报,1990, 12 (1).
- Jiang CY, Yang F, Wu WK, et al. The petrology and geochemist charac teris of volcanic rocks in Kumishi distric its tectonic environment [J]. Journal of Xi' an College of Geology, 1990, 12 (1): 1-10.
- 李昌年.火成岩微量元素岩石学[M].北京:中国地质大学出版社,1992.
- Li CN. Trace Element Petrology of Igneous [M]. China University of Geosciences Press, Beijing, 1992.

- 李向民,董云鹏,徐学义,等.中天山南缘乌瓦门地区发 现蛇绿混杂岩[J].地质通报,2002,21 (6): 304-307.
- Li XM, Dong YP, Xu XY, et al. Discovery of ophiolitic mélange in the Wuwamen area on the southern margin of the Central Tianshan Mountains [J]. Geological Bulletin of China, 2002, 21 (6): 304-307.
- 陆关祥,周鼎武,王居里,等.南天山东段榆树沟-铜花山 巨型构造混杂带的发现及意义[J].地质评论,2004, 50 (2): 120-124.
- Lu GX, Zhou DW, Wang JL, et al. Discovery of Tectonic Melange Belt in the Yushugou -TonghuashanArea and Its Significance [J]. Geological Review, 2004, 50 (2): 120-124.
- 汤耀庆,高俊,赵民,等.西南天山蛇绿岩和蓝片岩 [M].北京:地质出版社,1995.
- Tang YQ, Gao J, Zhao M, et al. The Ophiolites and Blueschists in the Southwestern Tianshan Orogenic Belt [M]. Geological Publishing House, Beijing, 1995.
- 王润三, 王焰, 李惠民, 等.南天山榆树沟高压麻粒岩地 体锆石 U-Pb 定年及其地质意义[J].地球化学, 1998, 27 (6): 517-521.
- Wang Runsan, Wang Yan, Li Huimin, et al. Zircon U-Pb Age and its geological significance of High-Pressure terrane of granulite facies in Yushugou area, Southern Tianshan Mountain [J]. Geochimica, 1998, 27 (6): 517-521.
- 王学朝,何国琦,李茂松,等.南天山南缘蛇绿岩岩石化 学特征及同位素年龄[J].河北地质学院学报,1995, 18 (4): 295-302.
- Wang XC, He GQ, Li MS, et al. Petrochemical characteristics and isotopic in southern part of South Tianshan [J]. Journal of Hebei College of Geology, 1995, 18 (4): 295-302.
- 王作勋, 邬继易, 吕喜朝, 等. 天山多旋回构造演化及成 矿[M].北京:科学出版社, 1990.
- Wang ZX, Wu JY, Lü XC, et al. Polycyclic Tetonic Evolution and Metallogeny of the Tianshan Mountains [M]. Science Press, Beijing, 1990.
- 吴文奎,姜常义,杨复,等.南天山榆树沟-铜花山构造混 杂体 维议 [J].西安地质学院学报,1992,14 (1): 8-13.
- Wu WK, Jiang CY, Yang F, et al. The Yushugou-Tonghuashan strucral mixtite in Xinjiang [J]. Journal

of Xi' an College of Geology, 1992, 14 (1): 8-13.

- 夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大 陆玄武岩和岛弧玄武岩[J].岩石学矿物杂志,2007, 26 (1):77-89.
- Xia LQ, Xia ZC, Xu XY, et al. The discrimination between continental basalt and island arc basalt based on geochemical method [J]. Acta PetrologicaEt Mineralogica, 2007, 26 (1): 77-89.
- 肖序常,汤耀庆,冯益民,等.新疆北部及其邻区大地构 造[M].北京:地质出版社,1992.
- Xiao XC, Tang YQ, Feng YM, et al. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions [M]. Geological Publishing House, Beijing, 1992.
- 杨经绥,徐向珍,李天福,等.新疆中天山南缘库米什地 区蛇绿岩的锆石 U-Pb 同位素定年:早古生代洋盆的 证据[J].岩石学报,2011,27 (1):77-95.
- Yang JS, Xu XZ, Li TF, et al. U-Pb ages of zircons from ophiolite and related rocks in the Kumishi region at the southern margin of Middle Tianshan, Xinjiang: Evidence of Early Paleozoic oceanic basin [J]. Acta Petrologica Sinica, 2011, 27 (1): 77-95.
- 周国庆.古塔里木大陆东北缘加里东蛇绿岩套的发现及其 构造意义[J].南京大学学报,1988,24 (1):39-54.
- Zhou GQ. A discoveru of ophfolite suite on the northraste RN margin of Talimu palaeo-continent in the Caledonian stage and its significance in tectonics [J]. Journal of Nanjing University (Natural Sciences), 1988, 24 (1): 39-54.
- Frey F A. Rare earth element abundance in upper mantlrocks. In: HendersonP (ed.). Rare earth Element Geochemistry [M]. Elesevier science publisherB. V., 1984, 153-203.
- Condie KC. Geochemical changes in basalts and andsites across the Archaena-Proterozoic boundary: Identification and significance [J]. Litos, 1989, 23: 1-18.
- Dmitriev LV. Serpentinization of oceanic hyperbasites. In: Recent contributions to geochemistry and analytical chemistry, Tugarinov [M]. New York: John Wiley & Sons, 1975, 243-250.
- Pearce JA and Cann JR. Tectonic setting of basic volcanic rocks determined using trace element analyses [J]. Earth and Planetary Science Letters, 1973, 19: 290-300.