doi: 10.11720/wtyht.2014.5.12

赵荣军,张宏伟,刘亚南,等.河南省新县上棋盘地区地球化学异常特征及评价[J].物探与化探,2014,38(5):929-935.http://doi.org/10.11720/ wtyht.2014.5.12

Zhao R J, Zhang H W, Liu Y N, et al. Characteristics and evaluation of geochemical anomalies of Shangqipan area in Xinxian County, Henan Province [J]. Geophysical and Geochemical Exploration, 2014, 38(5):929-935.http://doi.org/10.11720/wtyht.2014.5.12

河南省新县上棋盘地区地球化学异常特征及评价

赵荣军^{1,2},张宏伟^{2,3},刘亚南⁴,李彩霞¹,饶欢^{2,3},安迪宇^{2,5}

(1.河南省地质调查院,河南郑州 450001;2.河南省地质勘查项目管理办公室,河南郑州
450016;3.河南省国土资源科学研究院,河南郑州 450016;4.河南省地质矿产勘查开发局 第四地质勘查院,河南郑州 450001;5.河南省有色金属地质矿产局 第一地质大队,河南郑州 450016)

摘要:河南省信阳市新县上棋盘地区位于近南北向光山千鹅冲—新县上棋盘钼异常带上,具有较好的钼矿找矿前 景。笔者叙述了该区1:20万、1:5万水系沉积物测量综合特征,着重探讨了1:1万土壤地球化学测量异常特 征,利用地质累积指数对研究区内的土壤地球化学元素组合进行评价,经槽探和钻探工程验证,发现7条钼矿体, 取得了较好找矿成果。

上棋盘地区位于河南省信阳市新县县城北西 部,属河南省新县吴城河乡、陡山河乡和城关乡管 辖。北距信(阳)叶(县)公路7km,东距宁西铁路 10km,交通便利。该区地处大别山腹地,属中、低山 区,最高海拔800m,最低100m,相对高差700m。 该区属北亚热带半湿润型气候,地处我国亚热带北 部边缘,为亚热带向暖温带过渡区,气候温和,四季 分明,雨量充沛,植被发育,年平均气温15.2℃,最 高42.5℃,最低-10℃,年降雨量1200mm。

1989年,河南省地矿厅区域地质调查队完成了 1:20万新县幅区域地球化学测量,圈出一批以钼 为主的地球化学异常。其中,51-乙3综合异常位于 新县陡山河乡—吴陈河一带,异常元素以钼、钨、铋 为主。

2006~2007年,河南省地矿局第三地质调查队 实施河南省两权价款矿产远景调查项目"周党幅、 千斤河棚幅、泼河幅1:5万战略性矿产远景调查" 时,在该区圈出了以钼异常为主的上棋盘综合异常 (91-甲1-2),针对该异常开展了1:1万地质简测、1 :1万土壤地球化学测量、槽探验证,异常得到进一 步的确认。

2009~2010年,河南省有色金属地质矿产局第 五地质大队实施河南省地质勘查基金项目"河南省 新县上棋盘地区钼矿普查",通过系统工作,初步认 为区内大面积分布的早白垩世新县二长花岗岩,对 钼矿形成具明显控制作用,是钼的成矿母岩;构造蚀 变石英脉带和蚀变二长花岗岩夹小石英脉岩带是区 内重要的含矿部位;长时间、多期次的岩浆热液活 动,为区内钼矿体的形成提供了热动力条件和部分 矿物质。对1:1万土壤地球化学异常进行了系统 的地表槽探工程揭露和钻探工程验证,圈出了工业 矿体,并进行了资源量估算,取得了一定找矿效果。

1 地质特征

工作区大地构造属秦岭—大别造山带,豫鄂交 界的大别山北坡,位于秦岭—大别造山带东段的北 秦岭造山带内,桐(柏)—商(城)断裂北侧。

区内出露地层主要为中—新元古界浒湾岩组和 新生界第四系。浒湾岩组少量分布于矿区的西北 部,岩性为(含榴)白云斜长片麻岩、眼球状白云钾

基金项目:河南省地质勘查基金项目"河南省新县上棋盘矿区钼矿普查"(2008075)

(二)长片麻岩、黑云斜长片岩和斜长角闪片岩;新 生界第四系主要沿河流沟谷分布,为冲—洪积粉砂 质黏土层、亚黏土层、中细粒砂层及砂石层。

区内受控于桐(柏)—商(城)断裂带,次级构造 破碎带较发育,多呈北东—南西向、近南北向、近东 西向3组产出,形成规模不等的构造角砾岩带,区内 已发现的钼矿(化)脉,其形态和产状均受构造角砾 岩带控制。

区内岩浆活动频繁,岩浆岩发育,主要为侵入 岩,有元古代、早古生代、晚古生代和早白垩世侵入 岩,其中早白垩世岩浆岩岩性主要为新县二长花岗 岩,大面积分布于工作区,为区内主要侵入岩体。

w(Mo)/10⁻⁶

15

围岩蚀变主要是钾长石化、绢云母化、绿泥石化

和硅化;变质作用主要有区域变质作用、接触变质作 用和动力变质作用;矿体主要赋存在新县二长花岗 岩中,其主要的矿化有辉钼矿化、黄铁矿化、黄铜矿 化、褐铁矿化等。

2 1:20 万水系沉积物地球化学异常特征

1987~1989年,河南省地矿厅区域地质调查队 完成1:20万新县幅水系沉积物测量^[1],在上棋盘 地区圈出了51-乙3综合异常(图1)。

异常呈不规则条带状,面积 126 km²,以钼、钨、 铋异常为主,并发育铅、锌、锡异常。钼、钨、铋异常 异常强度高、规模大,具中带,且位置套合较好。推 测异常由钼、钨及多金属矿化引起。

 $w(W)/10^{-6}$

图 1 新县幅 1:20 万水系沉积物测量 51-乙 3 异常剖析(据参考文献[1]修编)

3 1:5万水系沉积物地球化学异常特征

2006~2007年,河南省地矿局第三地质调查队 在该区开展的1:5万水系沉积物测量成果显示^[2], 全区钼平均值、标准离差、变异系数(C_v)、富集系数 分别为:1.19×10⁻⁶、4.25、3.27、1.85。平均值高于全 区背景值(0.64×10⁻⁶)和全国背景值(1.13× 10^{-6[3]}),呈极强分异型分布(C_v >1.5)。这表明本 区钼具有较高的富集水平,具有较强的后生叠加和 成矿地球化学作用,是区内主要成矿元素。

在区内圈出上棋盘综合异常(91-甲 1-2)(图 2),异常位于新县陡山河乡与浒湾乡交界处的上棋

盘一潘前塆一带,位于北西西向和近南北向两组构 造断裂交汇复合部位,受南北向构造断裂制约明显。

钼异常形态不规则,近南北向分布,长约 6.75 km,宽 0.5~4.5 km,面积约 12.32 km²。北部强度低,向南含量增高。具 5 个浓集中心,北部 3 个浓集中心呈南北向展布,与整体异常走向一致;南部 2 个浓集中心走向近东西。异常区钼最高含量 45×10⁻⁶,平均 7.98×10⁻⁶,衬值 2.66。

钨异常面积略大于钼,与钼异常部分套合;铅异 常呈长条状分布在钼异常南部,与钼、钨异常套合分 布,异常强度较低;锌有4个单异常,其中北部异常 面积较大,具中带,与钼异常北部中带吻合;银异常

1—新生界全新统冲积相砂砾岩、粗砾岩、粉砂黏土层;2—新生界更新统冲洪积相粉砂黏土层类炭质淤泥层;3—白垩系打帽岭独立侵入体 (中)粒二长花岗岩;4—白垩系花岗岩;5—白垩系新县超单元第二单元中粒二长花岗岩;6—白垩系新县超单元第一单元细粒二长花岗岩; 7—新元古界田铺序列第四单元钾长花岗质片麻岩(白云钾长片麻岩);8—新元古界田铺序列第三单元二长花岗质片麻岩(二云二长片麻 岩);9—元古宇浒湾组高压岩块含榴白(二)云斜(二)长片麻岩、石榴斜长角闪(片)岩;10—元古宇浒湾组中压岩块眼球状白(二)云钾(二 长)片麻岩;11—吴陈河片麻状钾长花岗岩;12—新元古界邱堂片麻状花岗闪长岩;13—石英钠长斑岩脉;14—花岗斑岩脉;15—闪长岩脉; 16—断层;17—实测地质界线;18—岩相界线;19—1:1万土壤测量范围;20—异常外带;21—异常中带;22—异常内带

图 2 新县 1:5 万水系沉积物测量上棋盘(91-甲 1-2) 异常剖析(据参考文献[2]修编)

形态与铅异常近似,异常面积大于铅异常;金、锡异 常规模较小,强度较低,多呈星点状、椭圆状分布。

异常区主要发育早白垩世新县二长花岗岩,次

为早古生代片麻状钾长花岗岩,分布于异常北部局 部地区。在异常北部局部出露中新元古界浒湾岩 组,岩性为含榴白云斜长(二长)片麻岩、眼球状白 云钾(二)长片麻岩、黑云斜长片岩、斜长角闪岩。 西南部见少量新元古界第三单元二长花岗质片麻岩 出露。

通过路线检查和地质化探综合剖面测量,对异常进行初步查证,在异常浓集区发现多条钼矿(化)体,长100~1000m,厚0.5~17m,钼含量为(0.011~0.2)×10⁻²,赋存于早白垩世新县超单元北东向和近南北向构造破碎带中,初步认为属脉型钼矿床。

4 1:1万土壤地球化学异常特征

为了进一步查证上棋盘综合异常,在异常南部 新县二长花岗岩体位置开展了1:1万土壤地球化 学测量工作。按100 m×40 m的网度布样,完成面积约12.5 km²,采样2617件。测线近东西向,大致垂直断层破碎带走向。野外采样工作以1:1万地形图为底图,使用GPS定点,沿测线设计样点采样,并在采样点附近,采集3处以上的B层或B+C层土壤组成一个样品,采样深度一般大于20 cm。样品原始质量一般大于400g,过-60目筛后样品质量不小于150g。样品测试单位为河南省地矿局第三地质调查队,测试方法分别为催化极谱法(Mo、W)、化学光谱法(Au)、原子发射光谱法(Ag、Sn)、原子吸收光谱法(Cu、Pb、Zn)、原子荧光光谱法(As、Sb)。

土壤地球化学测量数据统计如表1所示。主成

表1 新县1:1万土壤地球化学测量数据统计(n=2617)

元素	Au	Ag	Sn	As	\mathbf{Sb}	W	Mo	Cu	Pb	Zn
平均值	0.94	0.12	4.58	7.78	1.00	4.50	5.96	18.01	51.25	69.59
标准离差	0.44	0.09	1.09	2.45	0.34	3.55	10.14	11.53	14.38	22.2
变异系数	0.47	0.74	0.24	0.32	0.34	0.79	1.70	0.64	0.28	0.32
最大值	9.42	1.05	13.31	20.49	4.98	85.21	170.8	209.7	1590	3350
最小值	0.25	0.03	1.68	0.22	0.01	0.44	0.25	2.4	13.40	22
背景值	0.90	0.10	4.51	7.70	0.97	3.86	3.35	15.63	50.43	67.89
富集系数	1.04	2.18	3.27	3.24	5.56	7.50	11.92	0.69	3.42	0.92
异常下限	1.5	0.18	6	12	1.5	7.5	8	25	75	100
中国土壤丰度[4]	1.40	0.08	2.5	10	0.80	1.80	0.80	24	23	68
地壳丰度[4]	0.90	0.055	1.4	2.4	0.18	0.60	0.50	26	15	76

 $(C_{v} < 0.45)_{\circ}$

根据计算的异常下限,用 Surfer 8 圈定钼异常 (图 3)。异常主要分布于上棋盘南北两侧,白垩系 新县超单元第一单元细粒二长花岗岩体中,异常面 积大、强度高、形态复杂、浓集中心显著。其中上棋 盘南部异常面积约 0.84 km²,强度高,最高含量为 170.80×10⁻⁶,平均 21.47×10⁻⁶,异常浓度分带明显, 内、中带发育,有多个浓集中心。其他地段钼异常呈 零星分布。

用 SPSS17.0 对土壤测量数据进行 R 型聚类分析(图 4)和相关性分析(表 2)。

图 4 新县土壤地球化学元素 R 型聚类分析谱系

表 2 新县土壤地球化学数据相关系数矩阵(n=2 617)

							· /			
元素	Au	Ag	Sn	As	\mathbf{Sb}	W	Mo	Cu	Pb	Zn
Au	1.000									
Ag	0.018	1.000								
Sn	0.035	0.101	1.000							
As	0.263	0.132	0.083	1.000						
\mathbf{Sb}	0.245	0.092	0.165	0.748	1.000					
W	0.04	-0.024	0.298	-0.111	-0.081	1.000				
Mo	-0.021	0.206	-0.036	0.042	0.045	0.076	1.000			
Cu	0.066	0.307	-0.086	0.077	0.013	0.125	0.365	1.000		
Pb	0.079	0.436	0.234	0.321	0.397	-0.06	0.046	0.068	1.000	
Zn	0.177	0.374	-0.024	0.366	0.235	0.016	-0.106	0.286	0.372	1.000

相关分析显示,As、Sb 间的相关性比较强,相关 系数达 0.748;次之为 Ag、Pb,Ag、Zn,Pb、Zn,Mo、 Cu,W、Sn 和 Ag、Cu,相关系数介于 0.25~0.50 之 间,相关性一般;其他元素的相关性则较差。

R型聚类分析过程中,As与Sb首先聚类,其次 是Ag、Pb、Zn,Zn、Ag、W、Mo、Cu中间进行聚类,W 和Sn最后聚类。在r=0.10相似水平上,元素分为 3组:第一组由中低温热液元素As、Sb、Cu、Pb、Zn 组成;第二组由Mo、Cu组成;第三组是高温热液元 素W和Sn。

参考环境污染评价中的地质累积指数^[6-10]研究 元素组合异常特征,地质累积指数表达式为

$$I_{\text{geoM}} = \log_2(\frac{C_{mn}}{1.5B_m}) \circ$$

式中, C_{mn} 为元素 m 第 n 个样品的标准化土壤地球 化学数据值, B_m 为所有样品中元素 m 的土壤地球 化学原始数据值经迭代剔除特高值(平均值+3 倍标 准离差)后的背景值, I_{geod} 为元素 m 的地质累积指 数。

考虑到 Mo、W、Pb、Zn、Ag 异常的综合影响,采 用综合地质累积指数对异常区内的土壤地球化学数 据进行处理和评价。其表达式为

$$I_{\text{geo}} = I_{\text{geoMo}} + I_{\text{geoW}} + I_{\text{geoPb}} + I_{\text{geoAg}} + I_{\text{geoCu}},$$
$$I_m = \frac{g_m}{\sum_{i=1}^{5} g_i},$$
$$C_{mn} = X_{mn} \times I_m,$$

式中: g_m 为元素 m 的原始相关系数; I_m 为标准化相 关系数,考虑到主成矿元素 Mo 的重要作用,其原始 相关系数取值 1,其他 4 个元素 W、Pb、Cu、Ag 原始 相关系数取其与 Mo 的相关系数;n 为样品编号; X_{mn} 为元素 m 第 n 个样品的土壤地球化学含量原始值; I_{geoM} 为元素 m 的地质累积指数; I_{geo} 为综合地质累积 指数。

利用以上公式计算全区采样点的综合地质累积 指数,主要特征值(最大值、最小值、平均值、标准离 差)分别为-8.65、-27.11、-18.57、2.61,按-16、-14、 -12(大致相当于异常外、中、内带)圈定等值线(图 3)。综合地质累积指数等值线图与钼异常分布特 征近似:高值区主要分布于上棋盘南北两侧,浓集中 心位置与钼异常基本一致;在钼异常不发育的地段, 地质累积指数也出现了局部高值区,特别在西北部 地区,部分高值区沿北东向呈串珠状分布,与构造破碎带基本一致。

5 异常验证

通过地质填图和槽探工程揭露,在上棋盘矿区 二长花岗岩中共发现钼矿体7条,钼矿化体31条。 钼矿(化)体均产出于早白垩世新县超单元二长花 岗岩中,表现形式多为(构造)蚀变石英脉型和浸染 (星点)状石英脉型。构造带内团块状角砾、石英脉 发育,蚀变以硅化、褐铁矿化为主。总体走向北东向 或近南北向,倾向北西或近东西向,倾角65°~75°, 长110~200 m,厚0.65~6.68 m。K1、K4-(1~5)、K5 为矿区主矿体。钼平均含量(0.036~0.057)×10⁻⁶。

在异常浓集中心位置施工验证钻孔 7 个,总进 尺 1 407.69 m,各钻孔均见矿(化)体,其中,ZK0101 见矿体 1 层,总厚度 1.50 m, Mo 平均含量为 0.036× 10⁻²,矿化体 1 层;ZK0301 见矿体 6 层,总厚度 6.20 m, Mo 平均含量为 0.054×10⁻²,矿化体 3 层;ZK0701 见矿体 5 层,总厚度 8.40 m, Mo 平均含量为 0.039× 10⁻²,矿化体 16 层;ZK0702 见矿体 4 层,总厚度达 9.90 m, Mo 平均含量为 0.058×10⁻²,矿化体 6 层; ZK0703 见矿体 2 层,总厚度 2.70 m, Mo 平均含量为 0.187×10⁻²,矿化体 4 层;ZK1101 见矿体 3 层,总厚 度 3.81 m, Mo 平均含量为 0.087×10⁻²,矿化体 5 层; ZK2001 见矿体 3 层,总厚度 4.75 m, Mo 平均含量为 0.032×10⁻²,矿化体 22 层。

6 结论

(1)本区的找矿是一个典型的通过地球化学勘 查逐步缩小找矿靶区,直至见矿的过程,即1:20万 化探扫面发现异常,1:5万水系沉积物测量进一步 确认和分解异常,1:1万土壤测量圈定验证位置, 工程验证见矿。

(2)地质累积指数等值线图综合了主成矿元素 和其他主要元素的异常特点,对异常的评价具有一 定的指导作用。

(3)通过普查工作,在矿区早白垩世新县二长 花岗岩体内发现规模较大的钼矿体7条,其产出位 置、产状、规模基本得到控制,产出状态与物、化探异 常吻合性较好,施工钻孔均穿见达工业边界品位以 上的矿(化)体,取得了一定找矿效果。

致谢:本文资料主要来源于河南省地质勘查基 金(两权价款)项目"周党幅、千斤河棚幅、泼河幅1 :5万战略性矿产远景调查"、"河南省新县上棋盘 矿区钼矿普查",在此谨向参加上述两个项目工作

的同仁表示衷心感谢!

参考文献:

- [1] 赵治华,宁福正,李桂珍,等.1:20万新县幅地球化学调查报告[R].河南省地质矿产厅区域地质调查队,1989.
- [2] 孙保平,万守全,马宏卫,等.周党幅、千斤河棚幅、泼河幅1:5 万战略性矿产远景调查报告[R].河南省地质矿产勘查开发局 第三地质调查队,2009.
- [3] 任天祥,伍宗华,羌荣生.区域化探异常筛选与查证的方法技术 [M].北京:地质出版社: 1998.
- [4] 鄢明才,迟清华.中国东部大陆地壳与岩石的化学组成[M].北 京:科学出版社,2005.
- [5] 王夏涛,王琦,乔保龙,等.河南省新县上棋盘矿区钼矿普查报 告[R].河南省有色金属地质矿产局第五地质大队,2011.
- [6] 崔敏,刘志宏,吴国学.黑龙江省乌拉嘎金矿外围土壤地球化学 找矿信息评价[J].世界地质,2007,26(2):190-195.
- [7] 李绍生.地质累积指数法在义马矿区土壤重金属及氟污染评价 中的应用[J].河南科学, 2011, 29(5):614-618.
- [8] 尚英男,倪师军,张成江,等.应用地质累积指数评价成都市河 流表层沉积物重金属污染[J].广东微量元素科学,2005,12 (10):12-16.
- [9] 孙社良,徐青峰,张寿庭,等.河南栾川地区陈南沟钼矿区土壤 地球化学异常的特征与评价[J].地质通报,2011,30(11): 1785-1793.
- [10] 严成文,李文铅.粤北梅子窝钨矿外围土壤地球化学找矿信息 评价[J].中国钨业,2010,25(5):18-21,28.
- [11] 胡以铿.地球化学中的多元统计分析[M].武汉:中国地质大学 出版社: 1991.
- [12] 李毅,胡海珠,陈丽娟,等.大别山北麓姚冲钼矿床地质特征及 找矿标志[J].地质与勘探,2013,49(2):280-288.
- [13] 罗铭玖,张辅民,董群英,等.中国钼矿床[M].郑州:河南科学 技术出版社: 1991.
- [14] 牟森.吉林通化、浑江地区化探找金成果及体会[G]//孙焕振, 李善芳.勘查地球物理勘查地球化学文集,北京:地质出版社: 1990.
- [15] 吴宏伟,任爱琴.河南银洞岭银矿床原生地球化学异常特征及 找矿模型[J].地质与勘探,2005,41(1):62-67.
- [16] 藏金生.刘山岩铜锌矿床地球化学异常特征及找矿评价标志[J].物探与化探, 2013,37 (2): 194-198.
- [17] 席明杰,马生明,刘崇民,等.内蒙古准苏吉花铜钼矿区土壤地 球化学异常特征与评价[J].地质与勘探,2013,49(2):337-345.
- [18] 燕长海,赵荣军,崔来运.河南栾川叫河—大清沟地区地球化学 异常特征[J].地质通报,2005,24(10-11):968-974.
- [19] 刘志坚,侯明才,张琇,等.宁夏中卫卫宁北山地区水系沉积 物测量地球化学特征及找矿方向[J].物探与化探,2013,37
 (4):608-614.
- [20] 赵荣军.河南卢氏县杜关地区地球化学异常及找矿效果[J].物 探与化探, 2001,25(6):447-452.
- [21] 赵荣军.不同方法在栾川北部化探数据处理中的应用[J].地质 与勘探, 2006,42(3):67-71.
- [22] 赵荣军.河南省光山县陈岗钼地球化学异常查证效果[J].地质 与勘探, 2013,49(5):914-919.

Characteristics and evaluation of geochemical anomalies of Shangqipan area in Xinxian County, Henan Province

ZHAO Rong-Jun^{1,2}, ZHANG Hong-Wei^{2,3}, LIU Ya-Nan⁴, LI Cai-Xia¹, RAO Huan^{2,3}, AN Di-Yu^{2,5}

(1. Henan Institute of Geological Survey, Zhengzhou 450001, China; 2. Geological Exploration Project Management Office of Henan Province, Zhengzhou 450016, China; 3. Henan Academy of Land and Mineral Resources Science, Zhengzhou 450016, China; 4. The Fourth Institute of Geological Exploration, Henan Bureau of Geology and Mineral Resources, Zhengzhou 450001, China; 5. No. 1 Geological Party, Bureau of Geology and Non-Ferrous Metal Resources of Henan Province, Zhengzhou 450016, China)

Abstract: Shanqipan area is located near the NS-trending molybdenum anomaly zone from Qian'echong in Guangshan County to Shangqipan in Xinxian County. The region has good molybdenum ore prospecting potential. The authors made a comprehensive analysis of the combined features of stream sediment geochemical survey at the scales of 1 : 200000 and 1 : 50000, with emphasis placed on the soil geochemical survey at the scale of 1 : 10000. An evaluation was also made on the soil geochemical element association by index of geoaccumulation. Trenching and drilling verification led to the discovery of 7 molybdenum orebodies, thus achieving satisfactory oreprospecting results.

Key words: molybdenum deposit; geochemical anomaly; index of geoaccumulation; Shangqipan area of Henan Province

作者简介:赵荣军(1973-),男,1992年毕业于赣州地质学校,高级工程师,从事地球化学勘查及地质勘查项目管理工作。E-mail:hnzrj@163.com