某铜镍多金属硫化矿工艺矿物学

谈伟军1, 冯泽平2

(1. 青海黄河矿业有限责任公司,青海 格尔木 816099;2. 中国电建集团西北勘测设计研究院有限公司,陕西 西安 710065)

摘要:本文研究了某铜镍多金属硫化矿的工艺矿物学,结果表明该矿石原矿中主要有用矿物为镍黄铁矿 和黄铜矿,主要金属硫化物为磁黄铁矿,少量黄铁矿。脉石矿物主要为蛇纹石、橄榄石和阳起石等镁硅酸盐矿 物。矿石具有较高的综合回收利用价值,建议开展对该矿铂、钯、金、银的赋存状态研究和相应的选矿工艺研 究,以最大限度地回收该矿中贵金属矿物。

关键词:铜镍多金属硫化矿;工艺矿物学;蛇纹石

doi:10.3969/j.issn.1000-6532.2022.06.032

中图分类号: TD981 文献标志码: A 文章编号: 1000-6532(2022)06-0189-04

随着经济发展,铜、镍等金属的需求量与日 俱增,高品位易选别的铜镍矿资源日益枯竭,世 界上铜镍金属矿资源逐渐趋于贫细杂,对选别工 艺要求越来越高。而工艺矿物学是决定选别工艺 流程的基础和关键,可以通过工艺矿物学的系统 研究,阐明其矿物中金属分布的规律,指导和配 合选矿工艺研究和实际生产。因此对铜镍共生的 多金属硫化矿进行工艺矿物学研究,查明其矿物 赋存状态具有重要意义。本文采用 MLA、X 射线 衍射分析仪、光学显微镜等分析检测手段对某铜 镍多金属硫化矿进行了工艺矿物学研究,获得了 全面的原矿工艺矿物学信息,为后续的选矿设计 研究提供了依据^[1-2]。

1 原矿多元素分析

原矿多元素分析结果见表 1。主要有价金属元 素为铜、镍,伴生的钴达到了综合回收的品位, 含有贵金属,贵金属具有重要综合回收价值。

Table 1 Multi-element analysis results of raw ore								
Ni Cu Co *Au *Ag *Pt *Pd Zn S								S
0.495	0.21	0.023	0.12	4.3	0.09	0.26	0.07	2.24
Fe	As	CaO	Al ₂ O ₃	SiO ₂	TiO ₂	MgO	K ₂ O	Na ₂ O
10.94	0.004	5.89	6.67	39.96	0.50	22.61	0.27	0.25

表1 原矿多元素分析结果/%

*单位为g/t。

2 原矿物质组成

2.1 原矿 X 射线衍射分析

原矿 X 射线衍射见图 1,原矿中以蛇纹石、 斜绿泥石和阳起石为主,其次为金云母、滑石、 方解石等。蛇纹石是原矿中含量最多的脉石矿 物,X 衍射分析显示蛇纹石以叶蛇纹石为主,其 次为利蛇纹石。

2.2 原矿矿物组成

采用 MLA 对原矿进行全矿物定量检测,检测结果见表 2。矿石中主要有用矿物为镍黄铁矿和黄铜矿;其他金属硫化物为磁黄铁矿和少量黄铁矿以及极少量闪锌矿;贵金属矿物有:砷铂矿、锑

收稿日期: 2020-12-06

作者简介:谈伟军(1990-),男,学士,工程师,主要从事选矿工艺研究工作。

铂矿、斜铋钯矿、方铋钯矿、自然金、银金矿和 自然银。脉石矿物主要为硅酸盐矿物,其中蛇纹 石、阳起石、橄榄石、辉石(包括顽火辉石、古 铜辉石和紫苏辉石)含量较高,此外还含有长石 (包括钠长石、斜长石和钾长石)、绿泥石、云 母(包括金云母和白云母)、滑石、黝帘石、角 闪石等,脉石矿物中含有少量方解石等碳酸盐矿 物;原矿中含有少量氧化物,主要为磁铁矿、铬 铁矿和钛铁矿。

图 1 原矿 X 射线衍射谱

Fig.1 X-ray diffraction spectrum of raw ore

表 2 原矿主要矿物及含量/% Table 2 Raw ore minerals and content

镍黄铁矿	黄铜矿	磁黄铁矿	黄铁矿	蛇纹石	绿泥石	橄榄石	阳起石	石英
1.020	0.524	3.784	0.177	48.083	1.669	5.890	17.735	0.345
长石	金云母	白云母	斜方辉石	普通角闪石	黝帘石	滑石	方解石	磁铁矿
3.735	1.440	0.600	5.926	0.43	1.795	1.448	1.597	1.728

2.3 矿石结构构造

矿石结构:该矿石中硫化物主要为他形不等 粒结构、海绵陨铁结构、固溶体分离结构(结状 结构、格状结构),部分硫化物呈脉状穿插结 构、脉状填充结构和网络状结构。成矿母岩主要 为橄榄岩和二辉橄榄岩,母岩普遍遭受蛇纹石 化、阳起石化、局部有碳酸盐化。矿石构造:块 状构造、条带状构造、浸染状构造、稀疏浸染状 构造、角砾状构造。

3 主要矿物的嵌布粒度

在原矿石中选取具有代表性的块样,制成光 片,采用 MLA 检测并结合反光显微镜测定硫化物 的嵌布粒度。从光学显微镜观察中,发现该矿石 中镍黄铁矿、黄铜矿与磁黄铁矿关系密切,大部 分镍黄铁矿、黄铜矿与磁黄铁矿连生或呈细小固 溶体分布在磁黄铁矿中。基于铜、镍矿物与磁黄 铁矿的不可分离性,有可能选矿时不作分选,因 而测定全硫化物(镍黄铁矿、黄铜矿与磁黄铁 矿)的嵌布粒度,也分别测定镍黄铁矿、黄铜矿 和磁黄铁矿的嵌布粒度,结果见表3。从表中可 见,由于硫化矿物之间紧密连生,全硫化矿物的 嵌布粒度较粗,以粗~中粒嵌布为主,+0.08 mm 粒度占有率为 88.58%; 而三种硫化矿物中, 以磁 黄铁矿的嵌布粒度较粗,与全硫化物类似,以粗 ~中粒嵌布为主, 镍黄铁矿与黄铜矿的嵌布粒度 相似,以细粒嵌布为主,其中-0.01 mm 的难选粒 子占 7% 左右^[3-5]。

表 3 主要矿物的粒度分布

Table 3	Particle size distribution of main minerals				
粒度/mm	全硫化物	镍黄铁矿	黄铜矿	磁黄铁矿	
+2.56	5.81	0	0	5.23	
-2.56+1.28	12.34	0	0	12.64	
-1.28+0.64	14.88	0.35	0.51	23.58	
-0.64+0.32	21.42	8.81	3.74	14.21	
-0.32+0.16	22.69	18.93	12.61	13.73	
-0.16 + 0.08	11.43	19.98	22.40	11.31	
-0.08+0.04	5.10	17.76	23.80	7.74	
-0.04 + 0.02	3.21	16.37	17.47	5.60	
-0.02+0.01	1.70	10.15	11.46	3.40	
-0.01	1.41	7.65	7.01	2.56	
合计	100.00	100.00	100.00	100.00	

4 主要矿物在矿石中的嵌布特性

4.1 镍黄铁矿 (Fe, Ni)₉S₈

镍黄铁矿是本矿石中最主要的镍矿物,其相 对含量为1.020%。镍黄铁矿属等轴晶系,常呈粒 状、叶片装或火焰状与磁黄铁矿连生,呈古黄铜 色,金属光泽,不透明,莫氏硬度3~4,密度 4.5~5.0 g/cm³,无磁性。镍黄铁矿化学成分能谱 检测结果显示,平均含Ni 35.41%,S 33.13%,Fe 29.83%。Ni:Fe>1(比值约1.15),并有钴以类质同 象进入镍黄铁矿晶格,Co平均含量为1.24%,是 钴的主要载体矿物。MLA和光学显微镜检测发 现,镍黄铁矿在矿石中与磁黄铁矿、黄铜矿固溶体 分离形成不同的嵌布形式,显微镜图见图2、3。

4.2 黄铜矿 CuFeS₂

黄铜矿是本矿石中最主要的铜矿物, 其相对

(镍黄铁矿与磁黄铁矿、黄铜矿固溶体分离,呈不规粒状与黄铜矿 一同包含于块状磁黄中)

> 图 2 显微镜,反射光 Fig.2 Microscope, reflected light

(超基性岩中的海绵陨铁结构,金属矿物(磁黄铁矿、镍黄铁矿、 黄铜矿)充填于硅酸盐矿物晶粒间呈他形晶集合体产出,其中的镍 黄铁矿碎裂状,并有磁铁矿充填其间,呈网络状分布) 图 3 显微镜,反射光 Fig.3 Microscope, reflected light

含量为 0.524%。黄铜矿呈黄铜黄色,金属光泽, 不透明,具贝壳状至不平坦断口,性脆。硬度 3~4,密度 4.1~4.3 g/cm³。矿石中黄铜矿化学成 分能谱检测结果显示,黄铜矿中普遍含少量镁硅 铝杂质,部分黄铜矿含镍、锌、银,平均含 Cu 34.32%,Fe 30.47%,S 34.9%。黄铜矿与磁黄铁 矿、镍黄铁矿紧密共生,与镍黄铁矿类似,黄铜 矿在矿石中的嵌布形式见图 4、5^[6]。

4.3 磁黄铁矿 Fe1-xS

磁黄铁矿为本矿石中数量最多的硫化矿物, 其相对含量为 3.784%。磁黄铁矿粉晶衍射显示, 该矿石中磁黄铁矿主要为单斜磁黄铁矿。磁黄铁 矿与镍黄铁矿和黄铜矿密切连生,是块状硫化矿 石的主要矿物,呈它形晶粒状集合体,晶粒间或 双晶面间常有熔离分离的镍黄铁矿或黄铜矿;在 超基性岩的海绵陨铁结构中,磁黄铁矿与镍黄铁 矿、黄铜矿共生,呈它形晶集合体嵌布于硅酸盐 脉石中[7]。

(块状硫化矿石中,黄铜矿呈固溶体分离结构,沿磁黄铁矿晶粒

间、双晶面呈微细粒分布) 图 4 显微镜,反射光 Fig.4 Microscope, reflected light

(在超基性岩中,硫化矿物与脉石矿物之间成海绵陨铁结构,黄铜 矿与磁黄铁矿固溶体分离,呈它形粒状嵌布于磁黄铁矿晶粒之间) 图 5 显微镜,反射光 Fig.5 Microscope, reflected light

4.4 贵金属矿物

(1) 铂钯矿物

本矿石中含 Pd 0.25 g/t, Pt 0.09 g/t。铂钯属于稀贵金属,数量极稀少,通过 MLA 检测光片首次发现了痕量铂钯矿物,主要为斜铋钯矿、方铋钯矿、锑铂矿和砷铂矿,见图 6。

(斜铋钯矿自形晶单体颗粒、方铋钯矿单体颗粒)

(oblique bismuth palladium ore self-crystal monomer particles, bismuth

palladium ore monomer particles) 图 6 扫描电镜背散射图像 Fig.6 Scanning electron microscope backscattered image (2) 自然金和银金矿

本矿石中含 Au 0.12g/t。自然金呈金黄色,强 金属光泽,具延展性。金粒化学成分见表 4,其平 均含 Au 75.53%,含 Ag 24.47%,大部分金粒中 Ag 含量高于 20%,可称为银金矿,少数为含银小 于 5% 的自然金。本矿石中金粒呈浑圆状、浑圆条 状或自形晶,金粒呈微细粒包裹在镍黄铁矿、黄 铜矿等硫化物中,见图 7。

表 4 镍在各矿物中的平衡分配 Table 4 Balanced distribution of nickel in various minerals

矿物	矿物含量/%	Ni/%	占有率/%
镍黄铁矿	1.020	33.95	68.98
磁黄铁矿	3.784	2.38	17.94
黄铜矿	0.877	0.42	0.44
脉石	94.672	0.067	12.64
合计	100.000	0.502	100.00

(金粒呈微细粒包裹在镍黄铁矿、黄铜矿等硫化物中) (gold particles are finely wrapped in sulfides such as pyrite

and chalcopyrite) 图 7 扫描电镜背散射图像 Fig.7 Scanning electron microscope backscatter image

5 镍、铜及钴在矿石中的赋存状态

5.1 镍在矿石中的赋存状态

根据原矿矿物含量和各矿物含镍量,作出镍 在矿石中的平衡分配见表 4。镍的赋存状态表明, 单独分选镍黄铁矿,镍的理论回收率约 69%,浮 选回收镍黄铁矿和磁黄铁矿等硫化矿物,镍的理 论回收率 87% 左右^[2,4]。

5.2 铜在矿石中的赋存状态

根据原矿矿物含量和各矿物含铜量,作出铜 在原矿中铜的平衡分配见表 5。通过光学显微镜 和 MLA 检测发现,磁黄铁矿和脉石中的铜主要以 微细固溶体或包裹体的黄铜矿形式存在,无法通 过细磨的方法将其解离,预计铜的理论回收率为 86% 左右。

表 5	铜在冬矿物由的平衡分配	67
1x .)		31

Table 5	Balanced distribution	of copper in va	arious minerals
矿物	矿物含量/%	Cu/%	占有率/%
镍黄铁矿	1.020	0.020	0.10
磁黄铁矿	^۲ 3.784	0.370	6.79
黄铜矿	0.877	33.920	86.22
脉石	94.672	0.015	6.89
合计	100.000	0.206	100.00

5.3 钴在矿石中的赋存状态

根据原矿矿物含量和各矿物含钴量,作出钴 在原矿中的平衡分配见表 6,通过浮选镍黄铁矿和 磁黄铁矿,可综合回收钴金属,预计钴的理论回 收率为 70% 左右。

表 6 钴在各矿物中的平衡分配

Table o Bala	ficed distribution o	i cobait ili va	mous minerais
矿物	矿物含量/%	Co/%	占有率/%
镍黄铁矿	1.020	1.240	56.02
磁黄铁矿	3.784	0.083	13.91
黄铜矿	0.877	0.049	1.14
脉石	94.672	0.007	28.93
合计	100.000	0.023	100.00

6 结 论

(1)该矿为赋存于蚀变超基性岩中的镍矿床,伴生铜、钴及贵金属铂、钯、金、银。原矿中主要有用矿物为镍黄铁矿和黄铜矿,主要金属硫化物为磁黄铁矿,少量黄铁矿。脉石矿物主要为蛇纹石、橄榄石和阳起石等镁硅酸盐矿物,脉石矿物中含有少量方解石等碳酸盐矿物。

(2)本研究中发现该矿存在多种贵金属矿物,如砷铂矿、锑铂矿、自然金、银金矿、自然银等。经化学分析表明原矿含Au0.14g/t,Ag4.3g/t,Pd0.32g/t,Pt0.1g/t。这些贵金属具有重要的综合回收价值,建议立项开展对该矿铂、钯、金、银的赋存状态研究和相应的选矿工艺研究,以最大限度地回收该矿中贵金属矿物^[2-3,6]。

(3)本矿石中镍黄铁矿、磁黄铁矿、黄铜矿 呈块状、条带状构造,三者呈集合体产出,三者 之间固溶体分离,以共结边连生,并且相互包 含,不易磨矿解离。

(下转第200页)