贵州省丹寨县老冬寨铅锌矿工艺矿物学研究

赖杨, 惠博, 龚大兴, 徐莺

(中国地质科学院矿产综合利用研究所,四川 成都 610041)

摘要:老冬寨铅锌矿位于贵州省丹寨县,铅锌矿体主要赋存于震旦系陡山沱组(Pt₃d)容矿地层中。本文 采用化学分析、显微镜分析、X射线衍射以及电子探针分析分析测试手段,对老冬寨铅锌矿进行了工艺矿物学 研究。研究结果表明,原矿综合样中闪锌矿含量为15.02%,方铅矿含量为0.81%,另见少量黄铁矿、黄铜矿; 脉石矿物主要为石英(56.21%),其次为白云母(15.2%)和高岭石(6.55%),以及少量白云石、方解石等。 Pb和 Zn 的主要载体矿物分别为方铅矿和闪锌矿,理论回收率分别为98.60%和87.90%。

关键词:铅锌矿;工艺矿物学;赋存状态;老冬寨;丹寨县

doi:10.3969/j.issn.1000-6532.2022.02.034 中图分类号: TD952 文献标志码: A 文章编号: 1000-6532 (2022) 02-0194-06

铅、锌在电器、机械、军事、冶金、化学、 医疗等领域用途广泛。我国铅锌矿的产量和消费 量巨大,但铅锌工业多年来的快速发展,也给生 态环境造成了一定的影响和破坏,严防重金属污 染已成铅锌行业不可逾越的红线。在"环保优先、 清洁生产"的新发展理念下,大力促进铅锌行业发 展向循环、低碳、绿色方向转变,所以丹寨县老 冬寨铅锌矿在勘探开发之初,有必要查清铅锌矿 工艺矿物学特征,为今后开发利用阶段制定绿 色、环保、高效的选冶工艺提供必要的技术支 撑。

1 地质概况

丹寨县老冬寨铅锌矿大地构造位于扬子陆块 江南造山带黔南坳陷都匀南北向构造变形区与榕 江加里东褶皱开阔复式褶皱变形区的交接部位, 综合地层区划属扬子地层区黔南分区台江-从江小 区,成矿区带划属上扬子东缘成矿带。矿区出露 的地层主要有青白口系平略组(Pt,p)、隆里组 (Pt₃*l*),南华系富禄组(Pt₃*f*)、大塘坡组 (Pt₃*d*)、南沱组(Pt₃*n*),震旦系陡山沱组 (Pt₃*d*),其中震旦系陡山沱组(Pt₃*d*)为主要的 容矿地层^[1],其岩性为灰-灰黑色含粉砂质炭质泥 质板岩夹白云质炭质钙质板岩及透镜状白云质灰 岩、白云岩。矿区内整体属倾向近北西向单斜构 造,平均倾向近西,倾角一般为20~40°,另发育 向斜构造,轴向北北西向,轴向长近1.3 km,宽 约1.5 km,两翼基本对称,核部为陡山沱组 (Pt₃*d*),产状平缓,形态开阔,向斜两翼地层为 南沱组及大塘坡组地层,岩层倾角一般17~25°。 矿区主要发育北东向和南北向断层,以北东向朱 砂场断层和近南北向老东寨断层为主干断层,而 矿床正处于两条断层的交汇处。

2 矿石组构特征

2.1 矿石结构

矿石结构主要有半自形晶结构、它形晶粒状 结构、碎裂结构(图1a)、交代残余结构、交代

收稿日期: 2021-08-11

基金项目:中国地质调查局二级项目"稀土锂铍等战略性矿产综合利用技术研究与应用"(DD2022 1697); "滇黔相邻区稀土资源基地综合地质调查"项目(DD20211236);"贵州毕节-六盘水地区能源资源基地综合地质 调查"项目(DD20189507)

作者简介:赖杨(1987-),男,硕士,工程师,从事工艺矿物学、岩石学、矿床学研究。

假象结构等。矿石中的闪锌矿为主要的矿石矿物,大部分单晶粒度<0.2 mm,一般为它形粒状集合体,粗细不一,和方铅矿紧密共生。闪锌矿多呈不规则状、粒状结构以及交代残余结构,闪锌矿表面一般不干净,常含大量杂质包体,常见含小乳滴状黄铜矿。矿石中的方铅矿含量不高,偶见自形或它形粒状或者集合体产出(图1b),镜下多见特征黑三角孔,粒度变化非常大,大者粒度可达 2 mm,小者粒度小于 0.01 mm,受应力作用可见揉皱结构,亦见黑三角孔具有拉长的现象。

 Sp-闪锌矿, Gn-方铅矿, Py-黄铁矿, Dol-白云石、方解石, Q-石英, C-玉髓、炭质碎斑
 图 1 老冬寨铅锌矿手标本
 Fig.1 Pictures of rock sample

2.2 矿石构造

矿石构造主要为块状构造,次要为脉状构 造、浸染状构造以及角砾状构造等。

块状构造:矿石主要以闪锌矿、方铅矿等组成,致密、无空洞,矿物颗粒大小不定,分布无 方向性,其中矿石矿物含量占75%以上,仅含少 量脉石矿物。

脉状构造: 矿石中闪锌矿、方铅矿以脉状、 细脉状沿脉石矿物裂隙侵入,脉宽 0.1~1 cm 不等。

浸染状构造:矿石中有闪锌矿、方铅矿等矿 石矿物以它形粒状呈无规则稀疏分散状分布于脉 石矿物中,矿石矿物含量一般<20%。

3 矿石物质组成

矿石物质组成研究的样品为选矿试验综合样品。为保证测试样品代表性,所取样品经过严格的试样加工后,均经过方格缩分法进行取样。物质组成研究工作包括化学组成和矿物组成两个部分。

3.1 化学组成

采用 X 射线荧光光谱分析,对原矿综合样进 行化学成分分析,分析结果见表 1。

表 旬 石 的 X 5	交光光谱分析结果/%

Table 1 X-ray fluorescence spectrum analysis of ores									
Cu	Pb	Zn	Cd	Fe	TiO ₂	MgO	Mn		
0.031	0.71	10.70	0.021	1.499	0.358	0.569	0.015		
CaO	S	SiO ₂	Al_2O_3	BaO	As	K ₂ O	Co		
0.406	5.413	65.903	8.461	0.115	0.00	1.912	0.004		

由表 1 可知, (1)该矿石中可供选矿回收的 主要元素为铅和锌,其品位分别为 0.712% 和 10.705%,硫含量为 5.413%,铜含量 0.031%,钾 元素含量 1.912%,应注意其综合利用和评价。另 据前人研究^[2],该铅锌矿还伴生有银、镓、锗等 有价元素。(2)矿石中脉石组分明确,主要脉 石组分为 SiO₂和 Al₂O₃,含量分别为 65.903% 和 8.461%, MgO、CaO 等其他脉石组份含量较低。

3.2 矿物组成

通过光薄片鉴定(图 2)、X射线衍射分析 (图 3)以及电子探针(图 4)综合分析,查明了 矿石中主要矿物种类及含量(表 2),结果表明矿 石中金属硫化物主要为闪锌矿(15.02%),其次 为少量的方铅矿(0.81%)、黄铁矿(0.81%), 偶见黄铜矿(0.08%);脉石矿物以石英 (56.21%)为主,其次为白云母(15.2%)和高岭 石(6.55%),以及少量白云石、方解石等。矿石 中的还可以见到微量矿物,包括磁铁矿、赤铁 矿、磷灰石、角闪石、重晶石、黑云母、伊利石 等(表 2),主要矿石矿物的特征描述如下。

图 2 主要矿石矿物显微镜下特征 Fig.2 Microscopic characteristics of major ore minerals

方铅矿:铅灰色,立方体晶型完整,呈自形 粒状集合体产出,显微镜下呈灰白色,无内反射 色,均质性,多见三组解理相交形成的典型黑三

表 2	原矿综	合样矿	物组成

Table 2 Mineral composition of ore samples										
矿物	闪锌矿	方铅矿	黄铁矿	黄铜矿	石英	白云母	高岭石	斜长石	其他	合计
含量/%	15.02	0.81	0.81	0.08	56.21	15.20	6.55	2.11	3.21	100

角孔(图 2b),局部可见受应力作用后形成的揉

皱现象。方铅矿常交代闪锌矿呈港湾状浸蚀结

构。据方铅矿电子探针分析结果显示(表3),方 铅矿中 Pb 平均含量为 86.78%, S 平均含量为 12.82%, Zn 平均含量为 0.05%, 另含微量的 Fe、Sb。

Table 5 Electron probe analysis results of galena											
	As	S	Fe	Zn	Pb	Cu	Cd	Sb	Со	Ni	合计
ly-1	0.00	12.95	0.00	0.03	86.40	0.05	0.00	0.01	0.00	0.00	99.44
ly-2	0.00	12.90	0.01	0.00	87.58	0.00	0.00	0.02	0.00	0.00	100.51
ly-3	0.00	12.83	0.00	0.16	86.37	0.03	0.00	0.00	0.00	0.00	99.39
ly-4	0.00	12.61	0.00	0.12	86.08	0.00	0.00	0.02	0.00	0.00	98.83
ly-5	0.00	12.92	0.00	0.00	87.75	0.04	0.00	0.00	0.00	0.00	100.71
ly-6	0.00	12.73	0.03	0.00	86.53	0.06	0.00	0.00	0.00	0.00	99.34
平均	0.00	12.82	0.01	0.05	86.78	0.03	0.00	0.01	0.00	0.00	99.70

表 3 方铅矿电子探针分析结果/% Table 3 Electron probe analysis results of galena

闪锌矿:浅黄灰色、半透明,他形粒状,原 生粒度普遍较小,显微镜下呈灰色略带褐色 (图 2a),无多色性,具有显著的棕黄-棕红色内 反射色,常见出溶乳滴状黄铜分布于矿闪锌矿 中,多见方铅矿交代闪锌矿形成浸蚀结构。据闪 锌矿电子探针分析结果显示(表 4),闪锌矿中 Zn平均含量为 62.65%,S平均含量为 33.68%, Fe平均含量为 3.38%,另含微量的 As、Sb。

表 4 闪锌矿电子探针分析结果/% Table 4 Electron probe analysis results of sphalerite

	As	S	Fe	Zn	Pb	Cu	Cd	Sb	Со	Ni	合计
ly-7	0.00	34.10	4.49	61.57	0.00	0.00	0.00	0.00	0.00	0.00	100.15
ly-8	0.00	33.61	1.45	64.73	0.00	0.00	0.00	0.00	0.00	0.00	99.79
ly-9	0.00	33.82	2.37	63.61	0.00	0.00	0.00	0.00	0.00	0.00	99.81
ly-10	0.00	33.46	3.47	62.76	0.00	0.00	0.00	0.02	0.00	0.00	99.70
ly-11	0.00	33.81	4.25	61.59	0.00	0.00	0.00	0.01	0.00	0.00	99.65
ly-12	0.04	33.26	4.24	61.62	0.00	0.00	0.00	0.00	0.00	0.00	99.17
平均	0.01	33.68	3.38	62.65	0.00	0.00	0.00	0.01	0.00	0.00	99.71

黄铁矿:浅黄白色,半自形-他形粒状,显微 镜下呈单黄色,均质性,多见半自形-他形粒状集 合体产出,偶见碎裂结构。据黄铁矿电子探针分 析结果显示(表 5),黄铁矿中Fe平均含量为48.45%,S平均含量为49.85%,Zn平均含量为0.55%,As平均含量为0.30%,另含微量的Cu、Co。

表 5 黄铁矿电子探针分析结果/% Table 5 Electron probe analysis results of pyrite

		-	140	IC J LICC	uon prooc	analysis ic	suits of py	inc		-	
数据	As	S	Fe	Zn	Pb	Cu	Cd	Sb	Со	Ni	合计
ly-13	0.55	51.88	45.11	0.54	0.00	0.00	0.00	0.00	0.05	0.00	98.13
ly-14	0.27	51.66	45.39	1.14	0.00	0.00	0.00	0.00	0.08	0.00	98.54
ly-18	0.43	52.94	45.68	0.38	0.00	0.00	0.00	0.00	0.09	0.00	99.51
ly-19	0.14	53.60	45.27	0.60	0.00	0.00	0.00	0.00	0.12	0.00	99.74
ly-20	0.16	52.78	45.70	0.57	0.00	0.00	0.00	0.00	0.07	0.00	99.27
ly-21	0.26	36.26	63.55	0.09	0.00	0.05	0.00	0.00	0.11	0.00	100.31
平均	0.30	49.85	48.45	0.55	0.00	0.01	0.00	0.00	0.08	0.00	99.25

黄铜矿:铜黄色,多呈他形粒状结合体,显 微镜下呈较浓的铜黄色,弱非均质性,主要以他 形粒状产出与闪锌矿、方铅矿以及脉石矿物颗粒 间隙中,另见少量黄铜矿呈出溶乳滴状产出于闪 锌矿中,形成固溶体分离结构。据黄铜矿电子探 针分析结果显示(表 6),黄铜矿中 Cu 平均含量

Table 6 Electron probe analysis results of chalcopyrite												
数据	As	S	Fe	Zn	Pb	Cu	Cd	Sb	Со	Ni	合计	
ly-15	0.14	36.60	29.86	0.00	0.00	33.77	0.00	0.00	0.04	0.00	100.40	
ly-16	0.16	35.54	30.04	0.00	0.00	33.03	0.00	0.00	0.00	0.00	98.77	
ly-17	0.12	35.85	30.15	0.00	0.00	32.92	0.00	0.00	0.00	0.00	99.03	
ly-22	0.13	34.72	30.68	0.00	0.00	33.45	0.00	0.00	0.05	0.00	99.04	
ly-23	0.14	34.76	30.98	0.00	0.00	34.66	0.00	0.00	0.04	0.00	100.57	
ly-24	0.12	35.69	30.75	0.00	0.00	34.52	0.00	0.00	0.02	0.00	101.10	
平均	0.13	35.53	30.41	0.00	0.00	33.72	0.00	0.00	0.02	0.00	99.82	

表6 黄铜矿由子探针分析结果/%

为 33.72%, Fe 平均含量为 30.41%, S 平均含量 为35.53%, As 平均含量为0.13%, 另含微量的 Co。

3.3 主要矿物工艺粒度

矿物的原生粒度[3-6]是重要的矿石性质,对选

表 7 主要矿石矿物的原生粒度统计 Table 7 Statistical table of primary grain size of useful minerals

粒径/µm	>1000	1000~150	150~75	75~20	20~10	<10	合计
闪锌矿/%	3.2%	13.2%	35.2%	40.8%	6.3%	1.3%	100%
方铅矿/%	1.6%	1.6%	9.8%	61.7%	25.3%	3.8%	100%

4 主要有价元素赋存状态及分布规律

在取得矿石中矿物含量、电子探针分析以及 矿石中铅锌的平均品位的基础上,进行铅、锌元 素分布规律统计(表 8),从表 8中可知,矿石中 方铅矿 Pb 元素分布率高达 98.60%, 说明矿石中 Pb 元素主要以硫化物形式赋存于方铅矿中,方铅 矿是回收 Pb 的主要目的矿物: 矿石中闪锌矿 Zn 元素分布率高达 87.90%, 说明矿石中 Zn 元素 主要以硫化物形式赋存于闪锌矿中,闪锌矿是回 收 Zn 的主要目的矿物。铅、锌元素理论回收率分 别为 98.60% 和 87.90%。

矿工艺有较大的影响。该铅锌矿的矿物组成简

单,主要的矿石矿物为方铅矿和闪锌矿,总体粒

度较细,它们的原生粒度统计见表7。

表 8 矿石中铅锌元素分布规律统计

	Table	8 Statistics	of distribution la	w of lead and zin	c elements in o	res		
矿物名称	矿物含旱/0/		Pb元素		Zn元素			
	1) 初百里/70	含量/%	金属量/%	分布率/%	含量/%	金属量/%	分布率/%	
闪锌矿	15.02	0.00	0.000	0.00	62.65	9.410	87.90	
方铅矿	0.81	86.78	0.703	98.60	0.05	0.000	0.00	
黄铜矿	0.08	0.00	0.000	0.00	0.00	0.000	0.00	
黄铁矿	0.81	0.00	0.000	0.00	0.55	0.004	0.04	
其他矿物	83.28	/	0.010	1.40	/	1.290	12.06	
合计	100.00	/	0.71	100.00	/	10.70	100.00	

5 结论

(1) 矿石中可供选矿回收的主要元素为 Pb 和 Zn, 其品位分别为 0.71% 和 10.70%; 另外 矿石中硫含量为 5.413%、铜含量 0.031%、钾元素 含量 1.912%, 应注意其综合利用和评价。

(2) 矿石中的闪锌矿为主要有用矿物,和方

铅矿紧密共生,大部分单晶粒度小于 0.2 mm,一 般为它形粒状集合体,粗细不一,其工艺粒度主 要集中在 150~20 µm 之间,含量合计约 76%。而 方铅矿的工艺粒度主要集中在 75~20 µm 之间, 含量约 61.7%,其粒度总体小于闪锌矿。

(3) Pb 和 Zn 的主要载体矿物分别为方铅矿

和闪锌矿,矿石中 98.60%的 Pb分布于方铅矿中,87.90%的 Zn分布于闪锌矿中。铅、锌元素理论回收率分别为 98.60%和 87.90%。

参考文献:

[1] 余杰, 徐阳东, 田亚江, 等. 贵州省丹寨老东寨铅锌矿床地 质特征及控矿条件分析[J]. 贵州地质, 2018(1):16-21.

YU J, XU Y D, TIAN Y J, et al. Geologic characteristic and analysis on ore-controlling factors of Laodongzhai lead-zinc deposit in Danzhai, Guizhou Province[J]. Guizhou Geology, 2018(1):16-21.

[2] 田亚江, 郑禄林, 余杰, 等. 贵州丹寨老东寨铅锌矿矿石特 征及选冶性能浅析[J]. 四川地质学报, 2019(4):556-559.

TIAN Y J, ZHENG L L, YU J, et al. A brief analysis of ore characteristics and dressing and metallurgical properties of the Laodongzhai Pb-Zn deposit in Danzhai, Guizhou[J]. Acta Geologica Sichuan, 2019(4):556-559.

[3] 蒋琳, 李阿俊. 内蒙古某含银铅锌矿工艺矿物学研究[J]. 矿产综合利用, 2020(1):94-97. JIANG L, LI A J. Study on process mineralogy for a silvercontaining lead-zinc ore in Inner Mongolia[J]. Multipurpose Utilization of Mineral Resources, 2020(1):94-97.

[4] 惠博, 王越, 陈伟, 等. 贵州某铅锌矿工艺矿物学研究[J]. 矿产综合利用, 2020(1):103-106.

HUI B, WANG Y, CHEN W, et al. Study on process mineralogy of a lead-zinc ore in Guizhou province[J]. Multipurpose Utilization of Mineral Resources, 2020(1):103-106.

[5] 程倩, 王明, 万宏民, 等. 某低品位铅锌矿选矿工艺研 究[J]. 矿产综合利用, 2021(1):65-71.

CHENG Q, WANG M, WAN H M, et al. Study on mineral processing technology for a low-grade lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2021(1):65-71. [6] 达娃卓玛, 刘潘, 李国栋, 等. 西藏某混合铅锌矿优先浮选 实验研究[J]. 矿产综合利用, 2021(3):82-87.

DAWA Z M, LIU P, LI G D, et al. Preferential flotation research on a mixed Pb-Zn ore in Tibet[J]. Multipurpose Utilization of Mineral Resources, 2021(3):82-87.

Study on Process Mineralogy of Laodong Zhai Lead-Zinc Deposit, Danzhai County, Guizhou Province

Lai Yang, Hui Bo, Gong Daxing, Xu Ying

(Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of

Geological Sciences, Chengdu, Sichuan, China)

Abstract: Laodong Zhai Lead-zinc deposit is located in Danzhai County, Guizhou Province. Lead-zinc ore bodies mainly occur in the Sinian Doushantuo Formation (Pt_3d). In this paper, the process mineralogy of Laodong Zhai Lead-zinc deposit was studied by means of chemical analysis, microscope analysis, X-ray diffraction and electron probe analysis. The results show that the content of sphalerite and galena is 15.02% and 0.81% respectively , in raw ore comprehensive sample. Gangue minerals are mainly quartz (56.21%), followed by Muscovite (15.2%), kaolinite (6.55%), and a small amount of dolomite, calcite and so on. The main carrier minerals of Pb and Zn are galena and sphalerite, with theoretical recovery rates is 98.60% and 87.90%, respectively.

Keywords: Lead-zinc deposit; Process mineralogy; Occurrence state; Laodong Zhai; Danzhai County