

中太平洋海山群玄武岩磷酸盐化特征及其对全岩地球化学的影响

王世奇, 叶现韬, 张传林, 石学法

Characteristics of phosphatization and its effects on the geochemical compositions of basalts from the Mid-Pacific Mountains

WANG Shiqi, YE Xiantao, ZHANG Chuanlin, and SHI Xuefa

在线阅读 View online: https://doi.org/10.16562/j.cnki.0256-1492.2022111401

您可能感兴趣的其他文章

Articles you may be interested in

西太平洋板内玄武岩的同位素地球化学特征

ISOTOPIC CHARACTERISTICS OF INTRAPLATE BASALTS IN WEST PACIFIC 海洋地质与第四纪地质. 2017, 37(1): 15-22

西太平洋海山区构造分区图编制及玄武岩Nd同位素填图

Compilation of tectonic map and Nd isotopic mapping for basalts in the seamount area of Western Pacific Ocean 海洋地质与第四纪地质. 2021, 41(1): 180-191

磷酸盐化作用对富钴结壳中稀土元素的影响

THE EFFECTS OF PHOSPHATIZATION ON THE REY OF CO-RICH FE-MN CRUSTS

海洋地质与第四纪地质. 2017, 37(2): 33-43

南海东部管事海山铁锰结壳的矿物组成和地球化学特征

Mineralogy and geochemisry of ferromanganese crusts from Guanshi Seamount in the eastern South China Sea 海洋地质与第四纪地质. 2019, 39(3): 94-103

西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征

Geochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western Pacific 海洋地质与第四纪地质. 2021, 41(1): 210-222

广东三水盆地玄武岩源区特征与南海早期演化

Source characteristics of basalts in Sanshui Basin and the early tectonic evolution stage of the South China Sea 海洋地质与第四纪地质. 2021, 41(3): 95-113

关注微信公众号,获得更多资讯信息

王世奇, 叶现韬, 张传林, 等. 中太平洋海山群玄武岩磷酸盐化特征及其对全岩地球化学的影响 [J]. 海洋地质与第四纪地质, 2024, 44(1): 67-80. WANG Shiqi, YE Xiantao, ZHANG Chuanlin, et al. Characteristics of phosphatization and its effects on the geochemical compositions of basalts from the Mid-Pacific Mountains[J]. Marine Geology & Quaternary Geology, 2024, 44(1): 67-80.

中太平洋海山群玄武岩磷酸盐化特征及其对全岩地球 化学的影响

王世奇1,叶现韬1,2,张传林1,石学法2

1. 河海大学海洋学院, 南京 210098

2. 自然资源部第一海洋研究所, 青岛 266061

摘要:大洋玄武岩是研究地幔不均一性、岩浆起源与演化的重要对象。然而,由于其长期与周围的海水相互作用,极易发生蚀 变和次生变化。磷酸盐化是大洋玄武岩最常见的次生变化之一,会影响到其全岩地球化学成分,且目前仍没有去除磷酸盐化 的有效方法。因此,研究磷酸盐化特征以及评估其对玄武岩全岩地球化学成分的影响至关重要。本文以中太平洋海山群(九 皋和紫檀海山)玄武岩为研究对象,通过能谱面扫描元素分布图、主量元素以及微量元素揭示玄武岩的磷酸盐化特征,评估 磷酸盐化对其全岩主微量元素的影响。面扫描元素分布图显示,中太平洋海山群玄武岩的磷酸盐化作用主要发生在玄武岩气 孔和裂隙周围,以交代早期的碳酸盐化基质,形成细小的磷酸盐矿物,呈浸染状分布在玄武岩基质中为特点,并且磷酸盐化会 不同程度地改变玄武岩的主量元素和微量元素成分:比如磷酸盐化会使玄武岩的 MgO、CaO、Na2O、MnO 含量降低,K2O 和 Fe2O3^T含量升高,同时也会对相容元素(如Cr、Co、Ni等)、大离子亲石元素(Rb、Ba、Cs等)和稀土元素造成不同程度的影 响。值得注意的是,在磷酸盐化过程中,玄武岩的 Al2O3、SiO2 和高场强元素(Nb、Ta、Zr、Hf和 Ti)几乎不受影响。 关键词:玄武岩;磷酸盐化;全岩地球化学;海山群;中太平洋

中图分类号: P736 文献标识码: A **DOI:** 10.16562/j.cnki.0256-1492.2022111401

Characteristics of phosphatization and its effects on the geochemical compositions of basalts from the Mid-Pacific Mountains

WANG Shiqi¹, YE Xiantao^{1,2}, ZHANG Chuanlin¹, SHI Xuefa²

1. College of Oceanography, Hohai University, Nanjing 210098, China

2. First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China

Abstract: Oceanic basalts are ideal samples in deciphering geodynamics, mantle heterogeneity, and magma origin and evolution. However, due to its long-term interaction with the surrounding seawater, it is easy to undergo alteration and secondary alteration. Phosphatization is one of the most common secondary alteration in oceanic basalts, which can affect the geochemical compositions of basalt and there is no effective method to eliminate it yet. Therefore, it is important to evaluate the effect of phosphatization on the geochemical compositions of basalt. The mapping of element distribution by energy spectrum surface scanning with energy dispersive spectrometer, and analyses of major and trace elements of the phosphatized basalts from the Mid-Pacific Mountains were conducted. The elemental mapping shows that the phosphatization occurred mainly around the vesicles and fissures of basalts. It metasomatized the early-formed carbonated matrix by which fine phosphate minerals were formed. Phosphatization would change the major elements and trace elements of basalt. For example, phosphatization could decrease the contents of MgO, CaO, Na₂O and MnO, and increase the contents of K₂O and Fe₂O₃^T in the basalt. Meanwhile, it also affected the compatible elements (such as Cr, Co, Ni, etc.), large ion lithophile elements (Rb, Ba, Cs, etc.), and rare earth elements. It is noted that Al₂O₃, SiO₂, and high field strength elements (Nb, Ta, Zr, Hf and Ti) of the basalts are nearly unaffected the the phosphatization.

Key words: basalts; phosphatization; geochemical compositions; seamount groups; Mid-Pacific Mountains

作者简介:王世奇(1996—), 男, 硕士研究生, 从事岩浆岩石学与矿物学研究, E-mail: 250269383@qq.com

通讯作者:叶现韬(1987—),男,博士,副教授,从事岩浆岩石学研究, E-mail: vexiantao@hhu.edu.cn

收稿日期: 2022-11-14; 改回日期: 2023-01-18. 周立君编辑

资助项目:国家自然科学基金项目"中太平洋海山群玄武岩的成因与源区特征"(42176093);青岛海洋科学与技术国家实验室海洋地质过程与 环境功能实验室开放基金项目"中太平洋海山区玄武岩年代学和地球化学特征:对海山成因和演化的启示"(MGONLM-KF201817)

大洋玄武岩来自地幔深部,未经历大陆地壳物 质混染,是研究地球内部动力状态、地幔不均一 性、各圈层相互作用、地壳物质再循环以及岩浆起 源与演化的理想对象^[1-3]。然而,由于其长期与周围 的海水相互作用,极易发生蚀变和次生变化^[4-7]。因 此大洋玄武岩除了其中的矿物发生蚀变外,还可能 在其气孔中充填沸石、蒙脱石、蛇纹石、碳酸盐和 磷酸盐等矿物^[8-12]。研究显示这些蚀变和次生变化 可能会对岩石样品的全岩主、微量元素(如K、Ce、 Sr等)和同位素(Sr和Pb同位素)数据产生显著的 影响^[13-17]。

磷酸盐广泛分布在陆棚、大陆坡和海底高地等 环境,水深从数百米至几千米不等,一般形成于氧 化-亚氧化环境^[18]。由于磷酸盐通常是富钴结壳的 主要组分之一,前人对其成因类型、元素组成及分 布规律进行了详细的研究^[19-27]。研究显示富钴结壳 中磷酸盐矿物的形成机制主要包括:①从沉积物或 结壳的孔隙水中直接沉淀出磷酸盐矿物,以Ca和 P为主;②交代碳酸盐形成的磷酸盐矿物,以富含 Si、Al和Fe为特征^[28-29]。另外,磷酸盐化还会导致 结壳的Co、Mg、Ni等元素贫化,而使Ca、P、Ba等 元素富集^[28,30]。除结壳外,海山玄武岩也极易发生 磷酸盐化^[31-32]。然而,这些磷酸盐矿物的存在方式、 形成机制以及对玄武岩全岩地球化学的影响仍不 清楚。

中太平洋地区经历了2次大规模(39~34 Ma 和 27~21 Ma)和3次小规模(71、31 和 15 Ma)的磷酸 盐化事件^[29,33]。因此,无论是该地区的富钴结壳还 是海山玄武岩,都遭受了不同程度的磷酸盐化^[32,34-35]。 本文选取中太平洋海山群九皋和紫檀平顶海山磷 酸盐化玄武岩为研究对象,利用岩相学观察、扫描 电镜能谱面扫描、全岩主量和微量元素分析,观察 玄武岩的磷酸盐化特征,评估磷酸盐化对大洋玄武 岩全岩地球化学组成的影响。

1 地质背景

中太平洋海山群位于中太平洋海盆北部,其东 北及东南分别与夏威夷海山岛链和莱恩群岛相接, 西部毗邻威克群岛与马绍尔群岛,向南直至中太平 洋海盆。中太平洋海山群是太平洋最大的海山群, 面积约为 0.25×10⁶ km², 坐标位置为 15°~ 25°N、 170°E~165°W。中太平洋海山群呈近东西向,延伸 约2500 km, 呈S形展布, 水深为800~5000 m(图 1a)。 中太平洋海山群主要由平顶海山(面积最大的 SIO 平顶海山,约2820 km²)、尖顶海山和海脊(如 阿池海脊、Necker海脊等)组成(图 1b)。高精度海 洋重力异常反演显示中太平洋海山群的地壳厚度 为16~23 km^[35-38],与周边白垩纪洋底高原地壳厚度 基本相同。这些平顶海山大多覆盖了巨厚(大于 800 m)的沉积岩系,前人通过多个钻孔中的双壳类 化石 Rudistids, 推测这些海山大约形成于早白垩 世[39-40]。这一时代与中太平洋海山群周围洋壳的磁 异常条带年龄(144~115 Ma)一致^[41-42]。更精确的 玄武岩基质40Ar-39Ar年代学分析显示中太平洋海山 群的形成年龄为128~89 Ma^[43-45],且这些海山并没 有显示随年龄定向分布的特点。

深海钻探计划(DSDP)和大洋钻探计划(ODP) 在中太平洋海山群内包含 Allison 海山、Resolution 海山、Horizon 海山等所在的各个区域实施了多次 钻探,共计钻取了约 160 m 玄武岩岩芯^[46-48]。岩相 学和主量元素显示这些玄武岩的岩性变化较小,主

a: 中太平洋海山群, b: 九皋海山及紫檀海山。

Fig.1 Location and bathymetric map of the Mid-Pacific Mountains

a: Mid-Pacific Mountains, b: the Jiugao guyot and Zitan guyot.

要为碱性玄武岩和碧玄岩。根据 DSDP 钻探记录显 示沉积地层主要由晚白垩世的生物碎屑灰岩、礁灰 岩、泥岩等,中新世至第四纪的有孔虫砂、钙质软 泥和燧石岩组成^[46-47,49-50]。此外,在地层顶部含有大 量的磷酸盐矿物和锰的氧化物^[45]。

九皋平顶海山和紫檀平顶海山位置如图 1b 所示。九皋平顶海山(20°09.14′N、172°03.04′E)位于海山群西部,面积约为 400 km²,山顶平台水深约 1700 m,最大水深为 2600 m,海山顶面较为平坦,边坡陡峭。紫檀平顶海山(19°44.88′N、171°54.88′E)位于九皋平顶海山南侧,二者位置相距较近,但面积相较九皋平顶海山更大,约为 1100 km²,山顶平台水深较浅,约为 1300 m,最大水深为 3900 m。

2 样品与方法

2.1 样品来源和岩相学特征

本文研究样品来自中国大洋 DY11 航次,取样 方式为地质拖网。九皋平顶海山玄武岩的取样位 置见图 2a,坐标 20°04.45 'N、171°58.33 'E,水深 2502 m;紫檀平顶海山玄武岩的取样位置见图 2b, 坐标 19°34.37 'N、171°56.30'E,水深 2729 m。

九皋海山玄武岩为斑状结构, 气孔构造。斑晶 主要为辉石和少量斜长石, 含量约为 3%(图 3a, b)。这些矿物均已发生严重蚀变, 仅可见辉石和斜 长石的晶形轮廓。基质为间隐—间粒结构, 可见细 小的辉石颗粒充填在斜长石微晶之间, 含量约为 97%(图 3a, b)。与九皋海山玄武岩类似, 紫檀海山 玄武岩为斑状结构、气孔构造。斑晶主要为斜长 石, 均已发生不同程度的蚀变, 含量约为 10%(图 3c, d)。基质为间隐结构,含量约为90%。

2.2 测试方法

九皋和紫檀磷酸盐化玄武岩扫描电镜能谱面 扫描在河海大学海洋科学实验中心完成,分析仪器 为 Tescan MIRA3 LMH,加速电压为 10 kV,光束光 斑为 10 孔径,工作距离 15 mm。对九皋和紫檀海山 玄武岩进行二维多元素面扫描,得到半定量的 Si、 Al、Mg、Fe、Ca 和 P 元素分布图。

为了最大限度地降低蚀变和碳酸盐矿物对样品的影响,先将蚀变严重的样品表皮去掉,然后将样品一分为二,一半用于岩石光薄片制作,另一半用于岩石化学粉末制备。将制备粉末的样品破碎至20~40目,在双目镜下挑选出新鲜、不含杏仁体的岩石颗粒,先后用2%的HCl和5%的H₂O₂清洗约10 min,再用去离子水清洗岩石颗粒3遍,最后烘干并将其碎至200目以下。

全岩主量元素采用 X 荧光光谱分析法, 在中国 科学院地球化学研究所矿床地球化学国家重点实 验室完成, 分析测试仪器为 Rigaku ZSK 100e 型荧光 光谱仪。样品详细处理流程参考文献 [52], 将 0.5 g 粉末样品和 4 g Li₂B₄O₇ 均匀混合后倒入铂金坩埚, 并加入适量的脱模剂溴化锂和氧化剂硝酸锂, 熔融 温度为 1200 ℃。待熔融完成后将其取出并倒入铂 金磨具中冷却成玻璃片, 以待后续 XRF 测试。样品 的烧失量(LOI)为干燥样品在 1200 ℃ 高温下灼烧 1 h 所损失的质量百分比。分析精度优于 5%。

全岩微量元素测试在中国科学院地球化学研究所矿床地球化学国家重点实验室完成,分析仪器为 Perkin- Elmer Sciex ELANDRC-e ICP-MS。分析测试过程参考文献 [53]。将 50 mg 的样品粉末加入特

图 2 海山地形图 a: 九皋平顶海山^[51], b: 紫檀平顶海山^[51]。 Fig.2 Bathymetric map of guyots a: Jiugao guyot, b: Zitan guyot.

图 3 海山玄武岩镜下照片(正交偏光) a, b: 九皋海山玄武岩, c, d: 紫檀海山玄武岩。 Fig.3 Representative photomicrographs of the basalts (cross Nicols) a-b: Basalts from Jiugao guyot, c-d: basalts from Zitan guyot.

氟龙闷罐中,然后加入1mLHF,在电热板上将其蒸 干以去掉SiO₂,再次加入1mLHF和0.5mLHNO₃, 加盖并放入不锈钢外套中,密封置于烘箱,在200℃ 的温度下消解48h。待冷却后取出于电热板上蒸 干,加入1mLHNO₃溶液蒸干并重复一次。加入5mL 蒸馏水和1mLHNO₃重新置于烘箱中在130℃温 度下消解8h。完成后取出冷却,加入500 ng Rh内 标溶液并转移至50mL离心管中以待检测。测试 过程中采用国际标样GBPG-1、OU-6和国家标样 GSR-1和GSR-3进行质量监控,分析精度优于10%。

3 结果

3.1 主量元素

玄武岩样品的主量元素测试结果见表 1。九皋 海山玄武岩 P₂O₅ 含量为 0.32%~1.47%, 平均值为 0.63%; SiO₂ 含量为 45.92%~49.80%; MgO 含量相对 较低,为 2.08%~5.22%, CaO 含量为 2.94%~8.10%; Na₂O、K₂O 含量分别为 1.01%~1.63% 和 0.95%~ 2.42%; 九皋海山玄武岩的烧失量(LOI)很高,为 6.09%~8.39%。可见九皋海山玄武岩样品经历了 强烈的蚀变作用或次生变化^[13,54-56]。在 SiO₂-Zr/ TiO₂(×10⁻⁴)图中,九皋海山玄武岩全部投入碱性玄 武岩区域。 紫檀海山玄武岩 SiO₂ 含量为 47.75%~51.08%, MgO 含量变化范围较大,为 2.42%~7.58%, Na₂O 含 量 为 1.84%~ 2.63%, K₂O 含 量 为 0.82%~ 3.57%, CaO 含量为 4.88%~7.98%, P₂O₅ 为 0.08%~0.41%, 平均含量为 0.16%。在 SiO₂-Zr/TiO₂(×10⁻⁴) 判别图 中,紫檀海山玄武岩属于亚碱性玄武岩(图 4)。

3.2 微量元素

玄武岩样品的稀土元素及微量元素测试结果 见表 2。九皋海山玄武岩具有较高的稀土总量 (\sum REE=182.93×10⁻⁶~298.94×10⁻⁶),在球粒陨石标 准化的稀土元素图解上表现为轻稀土元素强烈富 集(La_N =136.8~313.9,(La/Yb)_N=7.8~14.8)、重稀 土元素相对平坦($(Gd/Yb)_N$ =1.6~1.8)的模式。所 有样品具有明显的 Ce 异常(δ Ce=0.30~0.76)、轻微 的负 Eu 异常(δ Eu = 0.81~0.96)(图 5a)。在原始地 幔标准化微量元素蛛网图中(图 5b),九皋海山玄武 岩呈现出相似的分布型式,与典型洋岛玄武岩 (OIB)的特征类似^[57],总体上富集大离子亲石元素 (如 Rb、Ba),亏损重稀土元素。部分元素(如 La、 Pb、P和Y)出现不同程度的正异常或负异常。

紫檀海山玄武岩稀土总量(∑REE=39.44×10⁻⁶~ 121.40×10⁻⁶)略低于九皋海山玄武岩,在球粒陨石标 准化的稀土元素图解上表现为轻稀土元素富集 (La_N=23.4~141.3, (La/Sm)_N=1.7~5.1), 重稀土元素

			Table	e 1 Majo	or elements	of the Jiu	igao and	Zitan bas	salts				%
海山	样品编号	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃ ^T	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	LOI	SUM
九皋海山	CWD16-1.1	49.80	2.29	17.75	12.77	0.07	2.91	3.16	1.31	1.95	0.57	7.43	100.01
	CWD16-1.2	47.94	2.32	17.89	11.40	0.19	2.42	5.18	1.55	2.06	1.47	7.10	99.51
	CWD16-1.3	48.16	2.31	17.36	12.65	0.09	3.18	4.49	1.59	2.25	0.51	6.80	99.38
	CWD16-1.4	46.90	2.46	18.85	12.76	0.10	3.53	6.20	1.51	1.39	0.47	6.09	100.27
	CWD16-1.5	48.78	2.34	17.79	13.30	0.09	3.04	3.90	1.23	1.87	0.60	7.29	100.23
	CWD16-1.6	48.67	2.39	18.29	12.21	0.11	3.05	3.75	1.42	2.06	0.32	7.18	99.46
	CWD16-2.1	47.56	2.43	18.15	13.61	0.07	2.34	3.14	1.08	1.88	0.71	8.39	99.36
	CWD16-2.2	48.85	2.43	17.21	14.19	0.04	2.50	2.94	1.01	2.42	0.52	7.87	99.98
	CWD16-2.4	48.29	2.46	18.58	11.49	0.19	3.35	6.26	1.63	1.29	0.38	5.94	99.84
	CWD16-2.5	46.02	2.42	16.73	13.23	0.14	5.22	8.10	1.11	0.95	0.35	5.76	100.03
	CWD16-2.6	45.92	2.62	18.90	13.51	0.09	2.08	4.93	1.47	1.47	1.00	7.33	99.30
紫檀海山	CWD10-22	47.81	1.34	15.13	12.57	0.10	7.58	7.98	1.88	0.82	0.08	4.58	99.87
	CWD10-3	47.75	1.28	15.30	13.05	0.10	7.41	7.26	1.84	1.06	0.13	4.59	99.75
	CWD12-11	51.03	1.30	15.20	14.19	0.02	2.88	4.88	1.86	3.57	0.41	4.79	100.13
	CWD12-2	51.08	1.62	17.85	11.65	0.06	2.42	6.58	2.63	2.01	0.09	3.41	99.39
	CWD12-32	50.46	1.57	17.17	12.75	0.07	2.51	6.89	2.53	2.12	0.09	3.29	99.44

图 4 九皋和紫檀玄武岩 SiO₂-Zr/TiO₂ 地球化学判别图 Fig.4 SiO₂-Zr/TiO₂ diagram of the Jiugao and Zitan basalts

相对平坦的配分模式(图 5a)。所有的样品均具有 Ce异常(δCe=0.18~0.81), Eu异常不明显(δEu=0.79~ 1.15)。在原始地幔标准化微量元素蛛网图中(图 5b),紫檀海山玄武岩微量元素除个别样品外,大致 呈现出相同的分布型式,与富集型大洋中脊玄武岩 (E-MORB)相似^[57]。

4 讨论

4.1 磷元素的分布及磷酸盐化特征

如前所述,与大洋玄武岩相比,九皋和紫檀海 山玄武岩具有较高的 P₂O₅ 含量(0.08%~1.47%), 通 过对玄武岩局部能谱面扫描发现磷元素主要呈浸 染状分布在玄武岩的气孔(图 6)和裂隙(图 7)周 围。前人研究发现,玄武岩的磷酸盐化主要是由于 孔隙被有孔虫软泥充填或后期交代作用形成^{31]}。 近年来,部分学者通过对富钴结壳中磷酸盐矿物研 究表明,其形成机制主要包括两种:①从沉积物或 结壳的孔隙水中直接沉淀出磷酸盐矿物,元素主要 以 Ca 和 P 为主, 形成较纯的碳氟磷灰石(CFA); ② 交代碳酸盐形成的磷酸盐矿物,除了 Ca 和 P 元素 外,还富含 Si、Al 和 Fe 等元素[28-29]。九皋和紫檀海 山玄武岩元素分布图显示,这些玄武岩中的磷酸盐 矿物颗粒很小(大约为2~5 um),且与玄武岩的基 质融为一体,表明这些磷酸盐矿物并非是充填在气 孔或裂隙中的有孔虫软泥。此外,九皋和紫檀海山 玄武岩除了 Ca 和 P 元素外, 还存在 Si、Fe、Al 等相 关元素。因此,九皋和紫檀海山玄武岩基质中的磷

Table 2 Trace elements of the Jiugao and Zitan basalts																				
海山	样品编号	Sc	V	Cr	Со	Ni	Ga	Rb	Sr	Y	Zr	Nb	Cs	Ва	La	Ce	Pr	Nd	Sm	Eu
九皋海山	CWD16-1.1	24.9	103	319	10	104	18.4	50.8	627	64.1	286	63.6	2.31	567	55.1	58.9	9.93	40.3	7.54	2.31
	CWD16-1.2	21.5	118	321	25.9	180	18.5	45.3	763	109	288	65.8	1.6	1070	117	64.9	13.4	54	9.21	2.78
	CWD16-1.3	26.7	135	359	20.3	135	18.1	47.9	782	66.3	305	64.3	1.56	688	65.4	61.9	11.7	47.6	8.76	2.67
	CWD16-1.4	28.1	212	350	24.1	113	17.9	34.9	735	44	320	69.1	1.39	601	47.1	64.2	9.7	39.1	7.55	2.4
	CWD16-1.5	24.4	111	330	14.7	102	18.1	48.5	638	59.4	299	66.1	2.04	517	55.3	63.2	10.5	42.3	7.95	2.45
	CWD16-1.6	25.4	156	335	22.6	124	18.5	43.2	704	43.4	314	68.5	1.43	579	46.1	60.2	9.38	38	7.25	2.26
	CWD16-2.1	24.8	91	263	8.1	82.9	17.4	55	553	83.9	299	65.7	2.55	428	75.6	53.5	11.5	46.9	8.13	2.44
	CWD16-2.2	24.9	120	326	5.67	57.6	14.4	56.9	499	107	329	67.7	2.37	427	97.3	52.6	17.9	74.6	13.7	3.92
	CWD16-2.4	26.6	159	356	24.9	146	17.4	31.1	758	52.1	314	66.3	1.31	627	52.7	65.6	10.2	41.3	7.79	2.48
	CWD16-2.5	27.6	243	258	32.2	121	18.4	21.5	619	46.3	291	63.3	0.86	411	42.4	61.3	8.86	36	7.04	2.24
	CWD16-2.6	23.5	175	372	16.1	80.1	16.1	37.7	769	81.3	332	71.4	1.35	657	73.6	68.3	13.2	53.6	9.75	2.93
紫檀海山	CWD10-22	30.5	220	418	44.1	337	17.3	30.2	141	18.7	74.2	7.52	2.62	41.9	6.15	9.38	1.72	8.32	2.22	0.842
	CWD10-3	29.3	187	495	44.5	297	17.3	37.9	142	22.8	71.4	7.13	3.27	43.5	8.89	9.61	1.94	9.21	2.38	0.87
	CWD12-11	22.7	67	256	10.6	83.2	16.7	95.4	228	61.1	93	12.6	4.13	134	43.8	12.5	6.51	28.6	5.41	1.59
	CWD12-2	30.1	162	186	29.5	136	20.2	56	224	16.3	97.7	13.6	2.89	105	7.25	11.7	1.68	7.74	1.91	0.79
	CWD12-32	31	171	185	24.2	99	20	61.2	221	18.4	97	13.4	3.02	99.8	8	12.8	1.99	9.22	2.28	0.875
海山	样品编号	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Та	Pb	Th	U	δEu	δCe	δΥ	(La/\$	Sm) _N	∑REE
	CWD16-1.1	8.48	1.25	7.56	1.67	4.78	0.71	4.42	0.716	5.92	3.68	10.9	4.98	1.15	0.88	0.61	1.38	4.6		203.67
	CWD16-1.2	11.2	1.56	9.52	2.16	6.15	0.88	5.32	0.863	5.89	3.83	16.6	4.95	1.04	0.84	0.39	1.84	7.99		298.94
九皋海山	CWD16-1.3	9.73	1.41	8.28	1.76	4.88	0.714	4.4	0.696	6.2	3.89	13.7	5.21	1.04	0.88	0.54	1.33	4	.7	229.9
	CWD16-1.4	7.75	1.17	6.88	1.43	4.01	0.602	3.81	0.6	6.52	4.09	12.1	5.47	0.94	0.96	0.72	1.07	3.	92	196.3
	CWD16-1.5	8.7	1.29	7.65	1.66	4.75	0.71	4.45	0.727	6.12	3.82	20	5.06	0.96	0.9	0.63	1.27	4.38		211.64
	CWD16-1.6	7.49	1.11	6.42	1.33	3.67	0.535	3.33	0.522	6.43	4.03	17.7	5.4	0.84	0.94	0.7	1.13	4	1	187.6
	CWD16-2.1	9.82	1.39	8.39	1.93	5.45	0.791	4.84	0.792	6.24	3.85	15.2	4.87	1.12	0.83	0.44	1.59	5.85		231.47
	CWD16-2.2	15.9	2.26	13.4	2.88	7.95	1.14	6.84	1.08	6.45	3.91	19.5	5.53	1.19	0.81	0.3	1.32	4.47		311.47
	CWD16-2.4	8.22	1.21	7.07	1.49	4.11	0.599	3.72	0.592	6.47	4.07	14.7	5.2	0.67	0.95	0.68	1.23	4.	26	207.08
	CWD16-2.5	7.38	1.12	6.54	1.39	3.87	0.576	3.63	0.58	6.12	3.7	7.7	4.67	0.57	0.95	0.76	1.17	3.	79	182.93
	CWD16-2.6	10.9	1.59	9.58	2.1	5.93	0.87	5.35	0.849	6.83	4.37	13.7	5.56	1.35	0.87	0.53	1.38	4.	75	258.55
紫檀海山	CWD10-22	2.85	0.48	2.96	0.631	1.77	0.261	1.61	0.246	1.9	0.475	1.03	0.358	0.16	1.02	0.69	1.05	1.	74	39.44
	CWD10-3	3.1	0.514	3.2	0.699	1.94	0.285	1.78	0.274	1.83	0.452	0.943	0.374	0.18	0.98	0.56	1.16	2.	35	44.69
	CWD12-11	7.02	0.982	5.94	1.33	3.68	0.517	3.04	0.479	2.01	0.752	9.07	0.67	0.42	0.79	0.18	1.66	5.	09	121.4
	CWD12-2	2.32	0.391	2.4	0.526	1.49	0.223	1.4	0.216	2.39	0.815	1.61	0.59	0.39	1.15	0.81	1.11	2.	39	40.04
	CWD12-32	2.79	0.469	2.89	0.61	1.7	0.25	1.54	0.237	2.36	0.776	1.38	0.618	0.3	1.06	0.77	1.06	2.	21	45.65

表 2 九皋和紫檀玄武岩微量元素地球化学数据

注: 微量元素单位为10⁶; $\delta Eu = Eu_N/(Sm_N \times Gd_N)^{0.5}$, $\delta Ce = Ce_N/(La_N \times Pr_N)^{0.5}$, $\delta Y = Y_N/(Dy_N \times Ho_N)^{0.5}$.

酸盐矿物主要是由海水交代碳酸盐矿物而形成。 可见玄武岩的磷酸盐化还与其早期碳酸盐化相 关。值得注意的是,尽管海山玄武岩的基质均发生 了不同程度的碳酸盐和磷酸盐化,但其斑晶矿物却

Fig.5 Chondrite-normalized REE patterns (a: normalization values from reference[58]) and primitive mantle-normalized spider diagrams (b: normalization values from reference[57]) for the Jiugao and Zitan basalts

图 6 九皋玄武岩气孔周围能谱面扫描元素含量分布图

a: 单偏光图像, b、c: 背散射图像, d-i: 硅、铝、镁、铁、钙、磷元素能谱面扫描图。

Fig.6 EDS (energy dispersive spectrometer) images around the vesicles of the Jiugao basalts

a: Photograph of plane-polarized light; b-c: photograph of BSE; d-i: EDS (backscattered electrons) images of Si, Al, Mg, Fe, Ca, and P.

a: Photograph of plane-polarized light; b-c: photograph of BSE; d-i: EDS images of Si, Al, Mg, Fe, Ca, and P.

几乎不受影响(图 6-7)。因此,在对磷酸盐化玄武 岩进行成因研究时,若存在残留的新鲜矿物斑晶, 应尽量避免使用全岩地球化学数据,更推荐使用斑 晶矿物学的研究手段。

4.2 磷酸盐化对玄武岩主量元素的影响

玄武岩的主量元素是反映其岩浆性质及讨论 岩浆演化的重要指标。九皋和紫檀玄武岩的烧失 量为3.29%~8.39%,表明其主量元素受到了不同程 度蚀变的影响。稀土元素中的Ce元素对研究表生 作用具有很重要的指示意义,Ce异常通常用δCe来 表示。二元相关图解显示 P₂O₅ 与 LOI 和 δCe 具有 明显的相关性(图 8a-b),表明九皋和紫檀玄武岩的 P₂O₅ 含量与海水相互作用有关。

前人研究表明, δY 正异常是发生磷酸盐化的重 要标志^[21,59-61], 九皋和紫檀玄武岩样品普遍存在正 Y 异常(δ Y = 1.05~1.84), 平均值为 1.30, 表明均遭 受了不同程度的磷酸盐化。从二元相关图可见, 除 个别异常点外, 随着玄武岩的 δ Y 值升高, MgO、 CaO、Na₂O、MnO 含量降低, K₂O 和 Fe₂O₃^T的含量 升高。而 Al₂O₃、SiO₂ 和 TiO₂ 含量与 δ Y 的线性关 系不明显, 表明磷酸盐化可能会导致玄武岩样品的 MgO、CaO、Na₂O、MnO 贫化, 而 K₂O 和 Fe₂O₃^T富 集, 对 Al₂O₃、SiO₂ 和 TiO₂ 含量影响不大。

4.3 磷酸盐化对玄武岩微量元素的影响

玄武岩的微量元素对揭示其岩浆形成和演化 具有非常重要的作用,主要包括相容元素(如 Cr、 Co、Ni)、大离子亲石元素(如 Rb、Ba、K)、高场强 元素(如 Nb、Ta、Zr、Hf和 Ti)和稀土元素。前人对 磷酸盐化富钴结壳进行了详细的研究,评估了磷酸 盐化对富钴结壳地球化学组分的影响^[19-21,28,56,62-63]。

The diamond in the figure represents Jiugao guyot, and the circle represents Zitan guyot.

The diamond in the figure represents Jiugao guyot, and the circle represents Zitan guyot.

研究显示磷酸盐化会使结壳富集 P、Ca、Ba等元 素,亏损 Mn、Co、Ni等元素。在磷酸盐化玄武岩二 元相关图解上,随着 δY 的增加, Mn、Co、Ni和 Sc 的含量降低(图 9d、图 10a-c),表明随着玄武岩 磷酸盐化作用加强,玄武岩的 Mn、Co、Ni和 Sc 等 相容元素会发生贫化,这与前人对富钴结壳的研究 结果一致^[20]。大离子亲石元素(K、Rb、Sr、Ba、 Cs 等)由于离子半径大、离子电荷低、易溶于水,地 球化学性质活泼,活动性强,在发生蚀变和一些次 生变化时,这些元素极易发生富集或亏损。在磷酸盐化玄武岩二元相关图解上,随着 δY 的增加, Rb、Ba、Cs 的含量增加(图 10d-f),指示随着玄武岩磷酸盐化加强,玄武岩的大离子亲石元素会发生富集。与大离子亲石元素相比,高场强元素离子电价较高,半径较小,具有较高的离子场强,难溶于水,化学性质一般较为稳定,不易受变质、蚀变和风化等作用的影响。在二元相关图上, Zr、Hf、Nb 这类高场强元素与 δY 几乎没有相关性(图 10g-i)。同时,

Fig.11 Zr versus Hf, Nb, Ta and Ti diagrams

The diamond in the figure represents Jiugao guyot, and the circle represents Zitan guyot.

Zr 与 Nb、Ta、Hf、Ti 元素的相关性良好(图 11), 表明高场强元素在玄武岩磷酸盐化过程中仍然具 有较高的稳定性。稀土元素包括轻稀土、中稀土和 重稀土(如 La、Sm 和 Lu),它们都与δY呈明显的正 相关关系(图 10j-1),说明这些元素都会随玄武岩磷 酸盐化程度不同而发生变化,这与在原始地幔蛛网 图上出现 La 的正异常一致。前人研究显示,在磷 酸盐化过程中这些稀土元素的异常富集可能与碳 氟磷灰石对稀土元素的吸附作用有关^[11-12,19]。

综上所述,玄武岩磷酸盐化会导致相容元素、 大离子亲石元素和稀土元素发生不同程度的改变, 而高场强元素则几乎不受磷酸盐化作用的影响。 因此,仅有高场强元素可用于磷酸盐化玄武岩的原 岩的成因研究。

5 结论

(1)中太平洋海山群玄武岩经历了不同程度的 磷酸盐化,元素分布图显示这些磷酸盐化主要发生 在玄武岩气孔和裂隙周围,通过交代早期的碳酸盐 化基质,形成细小的磷酸盐矿物,呈浸染状分布在 玄武岩基质中。

(2)玄武岩磷酸盐化会影响玄武岩的主量元素,磷酸盐化可能会导致玄武岩的 MgO、CaO、Na₂O、MnO 含量降低,而K₂O和 Fe₂O₃^T含量升高,对 Al₂O₃、SiO₂和 TiO₂含量影响不大。

(3)玄武岩磷酸盐化会导致玄武岩的相容元素 (如 Cr、Co、Ni等)发生贫化、大离子亲石元素 (Rb、Ba、Cs等)和稀土元素发生富集,而高场强元 素(Nb、Ta、Zr、Hf)几乎不受磷酸盐化作用的影响。

致谢:感谢中国大洋样品馆提供研究样品,感谢谭婷婷在扫描电镜能谱面扫描实验中的帮助,感谢中国科学院地球化学研究所漆亮研究员和胡静 实验师在主微量元素分析上提供的指导和帮助。

参考文献 (References)

- White W M. Isotopes, DUPAL, LLSVPs, and Anekantavada [J]. Chemical Geology, 2015, 419: 10-28.
- [2] White W M, Hofmann A W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution [J]. Nature, 1982, 296 (5860): 821-825.

- [3] Zindler A, Hart S. Chemical geodynamics [J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571.
- [4] 卜文瑞,石学法,彭建堂,等.大洋岛屿玄武岩低温蚀变作用及其对 大洋过渡金属循环的贡献[J].海洋学报,2007,29(5):55-68. [BU Wenrui, SHI Xuefa, PENG Jiantang, et al. Low-temperature alteration of oceanic island basalts and their contribution to transition metal cycle of the ocean [J]. Acta Oceanologica Sinica, 2007, 29(5):55-68.]
- [5] 卜文瑞, 李力, 朱爱美, 等. 海底蚀变玄武岩中次生组分去除实验研究[J]. 地球科学进展, 2012, 27(10): 1167-1172. [BU Wenrui, LI Li, ZHU Aimei, et al. Leaching experiments of secondary components in altered submarine basalts [J]. Advances in Earth Science, 2012, 27(10): 1167-1172.]
- [6] Guy C, Daux V, Schott J. Behaviour of rare earth elements during seawater/basalt interactions in the Mururoa Massif [J]. Chemical Geology, 1999, 158 (1-2): 21-35.
- [7] Alt J C, Teagle D A H. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801 [J]. Chemical Geology, 2003, 201 (3-4): 191-211.
- [8] 陈建林,马维林,高水土,等.中太平洋结壳区海山燧石岩成因研究
 [J].海洋学报,2003,25(3):53-58. [CHEN Jianlin, MA Weilin, GAO Shuitu, et al. Genetic study on flint from the crust area of the central Pacific Ocean mountains [J]. Acta Oceanologica Sinica, 2003, 25(3):53-58.]
- [9] 陈建林, 马维林, 武光海, 等. 中太平洋海山富钴结壳与基岩关系的研究[J]. 海洋学报(中文版), 2004, 26(4): 71-79. [CHEN Jianlin, MA Weilin, WU Guanghai, et al. Research on the relationships between cobalt-rich crusts and substrate rocks in the Mid-Pacific Mountains [J]. Acta Oceanologica Sinica, 2004, 26(4): 71-79.]
- [10] 初凤友,陈建林,马维林,等.中太平洋海山玄武岩的岩石学特征与 年代[J].海洋地质与第四纪地质,2005,25(4):55-59.[[CHU Fengyou, CHEN Jianlin, MA Weilin, et al. Petrologic characteristics and ages of basalt in Middle Pacific Mountains [J]. Marine Geology & Quaternary Geology, 2005, 25(4):55-59.]
- [11] Melson W G, Thompson G. Glassy abyssal basalts, Atlantic sea floor near St. Paul's Rocks: petrography and composition of secondary clay minerals [J]. Geological Society of America Bulletin, 1973, 84(2): 703-716.
- [12] Thompson G. A geochemical study of the low-temperature interaction of seawater and oceanic igneous rocks [J]. Transactions-American Geophysical Union, 1973, 54: 1015-1019.
- [13] 鄢全树,张平阳,石学法,等.海底熔岩风化作用及其地质意义[J]. 海洋科学进展,2017,35(3): 369-381. [YAN Quanshu, ZHANG Pingyang, SHI Xuefa, et al. Weathering of seafloor lavas and its geological significance [J]. Advances in Marine Science, 2017, 35(3): 369-381.]
- [14] Koppers A A P, Staudigel H, Pringle M S, et al. Short lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 1089.
- [15] Corliss J B. The origin of metal bearing submarine hydrothermal solutions [J]. Journal of Geophysical Research, 1971, 76 (33): 8128-

8138.

- [16] Hart S R. K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts [J]. Earth and Planetary Science Letters, 1969, 6(4): 295-303.
- [17] Thompson G. Metamorphic and hydrothermal processes: basalt-seawater interactions [M]//Floyd P A. Oceanic Basalts. Dordrecht: Springer, 1991: 148-173.
- [18] 刘晖, 卢正权, 梅燕雄, 等. 海洋磷块岩形成环境与资源分布[J]. 海 洋地质与第四纪地质, 2014, 34(3): 49-56. [LIU Hui, LU Zhengquan, MEI Yanxiong, et al. Depositional environment and world distribution of marine phosphorites [J]. Marine Geology & Quaternary Geology, 2014, 34(3): 49-56.]
- [19] 王吉中.磷酸盐化对中太平洋海山富钴结壳物质组分的影响[D].中国地质大学(北京)博士学位论文, 2005. [WANG Jizhong. Effects of phosphatization on composition of Co-rich crusts on central pacific seamounts[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2005.]
- [20] 李江山,石学法,刘季花,等.西太平洋富钻结壳中磷酸盐化的制约 因素探讨[J].矿物学报,2011,31(S1):693-694.[[LI Jiangshan, SHI Xuefa, LIU Jihua, et al. Restriction factors of phosphorylation in cobalt-rich crusts in the Western Pacific Ocean [J]. Acta Mineralogica Sinica, 2011, 31(S1):693-694.]
- [21] 崔迎春,石学法,刘季花,等.磷酸盐化作用对富钴结壳元素相关性的影响[J].地质科技情报,2008,27(3):61-67.[CUI Yingchun, SHI Xuefa, LIU Jihua, et al. Effects of phosphatization on the elemental association of cobalt-rich crusts [J]. Bulletin of Geological Science and Technology, 2008, 27(3):61-67.]
- [22] 刘家岐,兰晓东.中太平洋莱恩海山富钻结壳元素地球化学特征及成因[J].海洋地质与第四纪地质,2022,42(2):81-91.[LIU Jiaqi,LAN Xiaodong. Element geochemistry and genesis of cobalt-rich crust on the Line Seamount of the Central Pacific [J]. Marine Geology & Quaternary Geology, 2022, 42(2):81-91.]
- [23] 任向文, 刘季花, 石学法, 等. 西太平洋Lamont海山中新世以来富钻 结壳成矿环境的演化[J]. 海洋科学进展, 2006, 24(1): 17-29. [REN Xiangwen, LIU Jihua, SHI Xuefa, et al. Evolution of ore-forming condition of Co-rich crusts from Lamont Guyot in the western Pacific since the Miocene [J]. Advances in Marine Science, 2006, 24(1): 17-29.]
- [24] Hein J R, Koschinsk A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific [M]//Cronan D S. Handbook of Marine Mineral Deposits. Boca Raton: CRC Press, 2017: 239-279.
- [25] Ji L H, Liu G S, Huang Y P, et al. The distribution of iodine and effects of phosphatization on it in the ferromanganese crusts from the Mid-Pacific Ocean [J]. Acta Oceanologica Sinica, 2015, 34 (8): 13-19.
- [26] Nishi K, Usui A, Nakasato Y, et al. Formation age of the dual structure and environmental change recorded in hydrogenetic ferromanganese crusts from Northwest and Central Pacific seamounts [J]. Ore Geology Reviews, 2017, 87: 62-70.
- [27] Jeong K S, Jung H S, Kang J K, et al. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry [J]. Marine Geology, 2000,

162 (2-4) : 541-559.

- [28] 潘家华, 刘淑琴, Decarlo E. 大洋磷酸盐化作用对富钴结壳元素富集 的影响[J]. 地球学报, 2002, 23(5): 403-407. [PAN Jiahua, LIU Shuqin, Decarlo E. The effects of marine phospharization on element concentration of Cobalt-rich crusts [J]. Acta Geoscientia Sinica, 2002, 23(5): 403-407.]
- [29] 武光海,周怀阳,凌洪飞,等.富钻结壳中的磷酸盐岩及其古环境指示意义[J].矿物学报,2005,25(1): 39-44. [[WU Guanghai, ZHOU Huaiyang, LING Hongfei, et al. Phosphorites in Co-rich crusts and their palaeooceanographic singificance [J]. Acta Mineralogica Sinica, 2005, 25(1): 39-44.]
- [30] 王洋,方念乔.多金属结壳生长间断期与磷酸盐化事件的关系[J]. 海洋学报,2021,43(1):102-109.[[WANG Yang, FANG Nianqiao. The relationship between the growth discontinuity of polymetallic crusts and phosphatization events [J]. Acta Oceanologica Sinica, 2021, 43(1):102-109.]
- [31] 朱佛宏.太平洋海山玄武岩的磷酸盐化[J].海洋地质动态, 1988(7):
 9-10. [ZHU Fohong. Phosphatization of Pacific seamount basalts [J]. Marine Geology Frontiers, 1988(7): 9-10.]
- [32] 朱克超. 麦哲伦海山区MA、MC、MD、ME、MF海山结壳基岩的 岩石学[J]. 海洋地质与第四纪地质, 2002, 22(1): 49-56. [[ZHU Kechao. Petrology of the substrate in seamounts MA, MC, MD, ME and MF from Magellan seamounts [J]. Marine Geology & Quaternary Geology, 2002, 22(1): 49-56.]
- [33] 潘家华,刘淑琴,杨忆,等.太平洋水下海山磷酸盐的成因及形成环境[J].地球学报,2004,25(4):453-458. [PAN Jiahua, LIU Shuqin, YANG Yi, et al. The origin and formation environment of phosphates on submarine guyots of the Pacific ocean [J]. Acta Geoscientica Sinica, 2004, 25(4):453-458.]
- [34] 汪在聪, 李胜荣, 刘鑫, 等. 中太平洋WX海山富钴结壳磷酸盐矿物学研究及成因类型分析[J]. 岩石矿物学杂志, 2007, 26 (5): 441-448.
 [WANG Zaicong, LI Shengrong, LIU Xin, et al. A mineralogical study and genetic analysis of phosphate in Co-rich crusts from the Central Pacific WX seamount [J]. Acta Petrologica et Mineralogica, 2007, 26 (5): 441-448.]
- [35] Kellogg J N, Ogujiofor I J. Gravity field analysis of Sio Guyot: An isostatically compensated seamount in the Mid-Pacific Mountains [J]. Geo-Marine Letters, 1985, 5 (2): 91-97.
- [36] Nemoto K, Kroenke L W. Sio Guyot: a complex volcanic edifice in the western Mid-Pacific Mountains [J]. Geo-Marine Letters, 1985, 5 (2): 83-89.
- [37] Kroenke L W, Kellogg J N, Nemoto K. Mid-Pacific Mountains revisited [J]. Geo-Marine Letters, 1985, 5 (2): 77-81.
- [38] Wilson P A, Jenkyns H C, Elderfield H, et al. The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots [J]. Nature, 1998, 392 (6679): 889-894.
- [39] Thiede J, Dean W E, Rea D K, et al. The geologic history of the Mid-Pacific Mountains in the central North Pacific Ocean; a synthesis of deep-sea drilling studies [J]. Initial Reports of the Deep Sea Drilling Project, 1981, 62: 1073-1120.
- [40] Hamilton E L. Sunken Islands of the Mid-Pacific Mountains[M]. New York: Geological Society of America, 1956.

- [41] Winterer E L, Metzler C V. Origin and subsidence of Guyots in Mid -Pacific Mountains [J]. Journal of Geophysical Research:Solid Earth, 1984, 89 (B12): 9969-9979.
- [42] Larson R L, Chase C G. Late Mesozoic evolution of the western Pacific Ocean [J]. Geological Society of America Bulletin, 1972, 83 (12): 3627-3644.
- [43] Ozima M, Honda M, Saito K. 40Ar-39Ar ages of guyots in the western Pacific and discussion of their evolution [J]. Geophysical Journal of the Royal Astronomical Society, 1977, 51 (2): 475-485.
- [44] Pringle M S, Duncan R A. Radiometric ages of basaltic lavas recovered at Sites 865, 866, and 869: Northwest Pacific atolls and guyots[C]//Proceedings of the Ocean Drilling Program. Scientific results. 1995, 142: 277-283.
- [45] Winterer E L, Natland J H, Van Waasbergen R J, et al. Cretaceous guyots in the northwest Pacific: An overview of their geology and geophysics[M]//Pringle M S, Sager W W, Sliter W V, et al. The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Washington: American Geophysical Union, 1993, 77: 307-334.
- [46] Larson R L, Moberly R, Lancelot Y. Initial Reports of the Deep Sea Drilling Project 32[M]. Washington: U. S. Government Printing Office, 1975.
- [47] Larson R L, Lancelot Y, Gardner J V. Magnetic, bathymetric, seismic reflection, and positioning data collected underway on Glomar Challenger, Leg 32[M]//Larson R L, Moberly R. Initial Reports of the Deep Sea Drilling Project 32. Washington: U. S. Government Printing Office, 1975: 393-427.
- [48] Baker P E, Castillo P R, Condliffe E. Petrology and geochemistry of igneous rocks from Allison and Resolution guyots, Sites 865 and 866: Northwest Pacific atolls and guyots [C]//Proceedings of the Ocean Drilling Program. Scientific Results. 1995, 142: 245-261.
- [49] 何欣, 孙国胜, 初凤友, 等. 中太平洋CA海山玄武岩中斜长石化学成 分特征及地质意义[J]. 海洋学研究, 2017, 35(2): 23-32. [HE Xin, SUN Guosheng, CHU Fengyou, et al. Chemical characteristics and geological implication of plagioclase in CA Seamount basalts from the Middle Pacific [J]. Journal of Marine Sciences, 2017, 35(2): 23-32.]
- [50] Chen S S, Liu J Q. Geochemical characteristics and geological significance of Cretaceous phonotephrite from the Mid-Pacific Mountains [J]. Science China Earth Sciences, 2018, 61 (6): 745-764.
- [51] 中国大洋矿产资源研究开发协会办公室.中国大洋海底地理实体名 录-2016[M].北京:海洋出版社, 2016. [China Ocean Mineral Resources Research and Development Association Office. Chinese Gazetteer of Undersea Features on the International Seabed, 2016[M]. Beijing: China Ocean Press, 2016.]
- [52] Li X H, Sun M, Wei G J, et al. Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block, southeastern China: evidence for an extremely depleted mantle in the Paleoproterozoic [J]. Precambrian Research, 2000, 102 (3-4): 251-262.
- [53] Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry [J]. Talanta, 2000, 51 (3): 507-513.
- [54] Gurenko A A, Hoernle K A, Hauff F, et al. Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the

central and western Canary Islands: insights into mantle and crustal processes [J]. Chemical Geology, 2006, 233 (1-2): 75-112.

- [55] 苏蓉. 中太平洋CNW海山玄武岩岩石地球化学特征及对富钴结壳 生长的影响[D]. 吉林大学硕士学位论文, 2015. [SU Rong. Geochemical characteristics of basalt and effect of cobalt-rich crusts growth in the Mid-Pacific CNW Seamount[D]. Master Dissertation of Jilin University, 2015.]
- [56] 李超. 中太平洋CH海山玄武岩地球化学特征及富钴结壳成因[D]. 吉林大学硕士学位论文, 2013. [LI Chao. Geochemical characteristics of basalt and research on Co-rich crust formation in the Mid-Pacific CH Seamount[D]. Master Dissertation of Jilin University, 2013.]
- [57] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes
 [J]. Geological Society, London, Special Publications, 1989, 42 (1): 313-345.
- [58] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies [J]. Developments in Geochemistry, 1984, 2: 63-114.
- [59] Wei X, Zhang Y, Shi X F, et al. Co-occurrence of HIMU and EM1 components in a single Magellan seamount: implications for the forma-

tion of west pacific seamount province [J]. Journal of Petrology, 2022, 63 (4) : egac022.

- [60] 任向文.西太平洋富钴结壳成矿系统[D].中国科学院研究生院博 士学位论文, 2005. [REN Xiangwen. The metallogenic system of Corich manganese crusts in Western Pacific[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2005.]
- [61] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60 (10) : 1709-1725.
- [62] 刘佳辉,曲扬,李伟强,等.西太平洋铁锰结壳中两类不同成因磷酸盐的元素特征、形成机制及指示意义[J].海洋地质与第四纪地质, 2022,42(2): 36-45. [[LIU Jiahui, QU Yang, LI Weiqiang, et al. Elemental distribution pattern and forming mechanism of the two types of phosphates in ferromanganese crust in Western Pacific Ocean and their implications [J]. Marine Geology & Quaternary Geology, 2022, 42(2): 36-45.]
- [63] Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13 (3): 177-182.