文章编号:1009-2722(2015)04-0028-07

下扬子地块2个古生界地质剖面的 烃源岩特征及其对南黄海盆地的意义

许 $红^{1,2}$,张柏林^{2,3},俞 吴⁴,杨艳秋^{1,2},施 剑^{1,2},刘志飞⁴,

赵新伟2,5,朱玉瑞2,5,李建委2,6,卢树参1,3,张海洋1,3

(1 国土资源部海洋油气资源与环境地质重点实验室,青岛 266071;2 青岛海洋地质研究所,青岛 266071;
 3 中国地质大学(武汉),武汉 43005;4 中石化华东分公司石油勘探开发研究院,南京 210036;

5 中国石油大学(华东),青岛 2665807;6 山东科技大学,青岛 266510)

摘 要:针对南黄海海域油气勘探缺乏揭示古生界钻井样品资料的窘况,对邻近陆区2个 典型露头剖面进行了调查研究。这2个剖面分别为南京幕府山的下古生界寒武系陆相泥 岩和安徽巢湖的上古生界二叠系海相灰岩,都呈深灰黑色;前者是当前下扬子陆区页岩气 勘探重点研究层系;后者出霉面积较大,似臭鸡蛋味浓烈,为含硅碳酸盐岩,俗称"臭灰 岩"。通过系统油气地球化学测试,证实其均为优质烃源岩;岩石物性测试结果表明,后者 还可为优质储集岩。由于古生代下扬子地块具有地台性质,沉积体系向南黄海海区自然 延伸沉积,因此,利用这些来自陆区露头地质剖面的珍贵样品推测,二者均可作为南黄海 盆地尤其是南部坳陷的潜在主力烃源岩,以期为相应的油气勘探评价提供借鉴。 关键词:油气地球化学;烃源岩;二叠系臭灰岩;寒武系泥岩;古生界;下扬子地块;南黄海 中图分类号:P618.13 文献标识码:A DOI:10.16028/j.1009-2722.2015.04005

南黄海盆地合计钻井 26 口,钻井揭示的最古 老地层为石炭系。古生界被认为是主要勘探目的 层^[1]之一。笔者通过精心研究毗邻南黄海下扬子 陆区露头地质剖面特征,有针对性地选择上下古 生界多条不同露头剖面实施调查,通过测试分析 评价获得的珍贵数据弥补了海区钻井实物资料及 测试数据的不足。

本次野外地质调查路线(图1)为:青岛一连 云港一南京一巢湖一泾县一宁国一长兴,实际在 连云港、南京、巢湖、泾县一宁国、长兴等5大预选

作者简介:许 红(1957—),男,博士,研究员,主要从事海域油 气成藏与资源勘探评价方面的研究工作.E-mail:qdxhong@163.com 调查区观察野外露头剖面 25条,实测剖面 1条。 据前人研究,苏北幕府山组生烃层系指标很好,被 认为是苏北页岩气勘探有利层系^[2];巢湖二叠系 为一套浅海相泥页岩及海陆过渡相含煤岩系^[3-5], 栖霞组深灰色灰岩有机碳含量高,综合评价为中 等烃源岩^[6]。

本次选择性研究了位于南京寒武系幕府山剖 面和安徽巢湖平顶山二叠系栖霞组臭灰岩剖面调 查的成果,结果与前人有所不同。前人测试评估 栖霞组灰岩的生储能力低、寒武系幕府山组深灰 黑色泥岩的生烃潜量指标低^[2-19]。

1 地质构造背景与调查研究意义

下扬子地块位于扬子地台东北缘陆区,西以 郯庐断裂为界,西北与鲁苏一千里岩隆起相连,西

收稿日期:2015-01-05

基金项目:中国地质调查局项目(GZH201200510);国家重点 基础发展研究计划(973计划)(2012CB956004);国家自然科学基 金(41106064,49206061)

图 1 下扬子陆区野外地质剖面调查路线及 剖面位置(C为南京;D为巢湖剖面)

Fig. 1 Geological excursion route and field sections studied(C for Nanjing, D for Chaohu section)

南到九江,以赣江断裂为界与中扬子地区相邻,南 及东南以江绍断裂为界伸入南黄海,面积为36× 10⁴ km^{2[20]}。本次调查研究区位于下扬子陆区地 块中北部(图2),可代表直接延伸进入南黄海海 区苏皖北次地块的地质沉积岩石性质的特征。因

图 2 下扬子陆区南京下古生界和 巢湖上古生界地质剖面构造位置

Fig. 2 The tectonic location of the field sections

此,无论对于直观研究南黄海盆地前石炭系沉积 地层和岩性特征,还是补充海域极度缺乏的古生 界岩石样品及其烃源岩测试评价的认识,以及海 陆盆地对比,都具有实际意义。

29

2 地质剖面特征

2.1 南京幕府山寒武系剖面的特征

该剖面及采样点位于南京幕府山山脚。寒武 系幕府山组地层是该剖面出露的两大岩性之一。 沉积层大多为植被覆盖;露头无产状,深灰色、黑 色,以大小无序堆积的深色泥岩间夹似煤系岩块 为主,随机采集该剖面样品特征见图 3 及表 1。

图 3 江苏南京寒武系幕府山组露头剖面及黑色泥岩 Fig. 3 Outcrop section of Cambrian Mufushan Formation, Nanjing, Jiangsu and the black mudstone

表1 南京一巢湖调查剖面样品采集数据

Table 1Data of samples collected fromNanjing and Chaohu sections

序号	剖面 名称	地质 年代	海拔高 度/m	岩性	采集点产状
1	幕府山组	寒武纪	95.5	泥页岩	沿山坡无序堆积
2	栖霞组	二叠纪	117	硅质灰岩	倾向 297°,倾角 44°
3	栖霞组	二叠纪	117	硅质灰岩	倾向 297°,倾角 44°

2.2 巢湖平顶山南二叠系剖面特征

从采石场开发出露的剖面可见,二叠系栖霞

组灰岩多呈深灰黑色(图 4、5),顶部岩性即深灰 黑色含燧石结核臭灰岩,臭鸡蛋味强烈,室内定名 含硅质灰岩,可能白云化。

图 4 安徽巢湖平顶山南二叠系栖霞组露头剖面 Fig. 4 Outcrop of Qixia Formation of Permian, Pingding Hill, Chaohu, Anhui

a露头剖面近景

b 臭灰岩特写

图 5 安徽巢湖平顶山南二叠系栖霞组剖面

Fig. 5 Outcrop of the stinking limestone of Qixia Formation of Permian, Pingding Hill, Chaohu, Anhui

3 油气地球化学测试及分析

3.1 有机质类型

3.1.1 干酪根显微组分特征及有机质类型

利用显微镜透射光和显微有机组分含量分析 技术测试干酪根显微组分及有机质类型。结果涉 及透射光颜色、形态及结构的特征与各类显微有 机组分含量百分比等。利用干酪根类型指数计算 式:TI=[腐泥组×100+壳质组×50+镜质组× (-75)+惰质组×(-100)]/100,计算获得了TI 值;根据干酪根镜下特征鉴定分类(表 2),获得南 黄海盆地烃源岩样品干酪根类型(表 3)。

表 2 干酪根镜下特征鉴定分类

Table 2 Classification of kerogen upon microscopic characteristics

类型	TI	产油气性质
腐泥型 Ⅰ	>80	产油为主
含腐殖腐泥型 Ⅱ1	$80 \sim 40$	产油气
含腐泥腐殖型 Ⅱ2	$40 \sim 0$	产气油
腐殖型 Ⅲ	< 0	产气为主

不难发现,二叠系和寒武系烃源岩以腐泥型 干酪根为主,主要属于产油母岩;但在演化程度高 的情况下,该母岩将以产气为主。

3.1.2 岩石热解参数划分有机质类型

评价有机质类型的热解参数有:氢指数(HI) 和类型指数(S₂/S₃)(表 4)。在高成熟一过成熟 阶段,划分有机质类型的有效指标是干酪根的碳 同位素;本文根据 HI—*T*_{max}有机质类型判识图划 分样品的有机质类型。

利用岩石热解 HI—T_{max}测试结果进行综合

分析,可部分反映样品有机质类型的特征。由图 6 可见,3 个样品落在 HI-T_{max}有机质类型分析 图的典型 I型干酪根区。

31

Table 3 Kerogen types of hydrocarbon source rocks from the South Yellow Sea Basin

原始样品编号	地区/井号	层位	岩性	TI 值	干酪根类型	备注
No. 13	~ H 구 M F		深灰黑色硅质灰岩	98.3	Ι	大块状
No. 14	下扬于地区	登杀	深灰黑色硅质灰岩	98.3	Ι	
No. 15	下扬子地区	寒武系	深灰黑色泥岩	96.5	Ι	碎屑状

表 4 岩石热解参数划分有机质类型标准

 Table 4
 Classification of rock pyrolysis

 parameters on different standard

参数/类型	Ι	II 1	II 2	Ш
HI	>500	$500 \sim 350$	$350 \sim 100$	<100
Cp/TOC	>50	$50 \sim 30$	30~10	<10
S_2/S_3	>20	$20 \sim 5$	5~2.5	<2.5

图 6 下扬子地区烃源岩样品 HI—*T*_{max}有机质类型判识图

3.1.3 以氯仿沥青"A"族组分判断有机质类型

根据饱/芳比值大小与(饱+芳)相对含量可 区分4种干酪根类型:有机质的(饱+芳)含量> 60%,饱/芳>3为Ⅰ型,饱/芳<3或者有机质(饱 +芳)含量<10%为Ⅲ型。根据测试结果(表5), 样品饱/芳和(饱+芳)数据居于Ⅰ—Ⅱ型干酪根 之间。

表 5 研究区烃源岩样品族组分含量统计

Table 5 Strain composition of hydrocarbon

source rocks in the study area

			族约		(24 -		
原编号	层位	烷烃	芳烃	非烃	沥青	饱/芳	
		/ %	/ %	/ %	质/%		方)/ %
No. 13	二叠系	9.86	21.13	42.25	26.76	0.47	30.99
No. 14		13.44	25.54	41.67	8.06	0.53	38.98
No. 15	寒武系	28.83	28.63	9.68	19.76	1.01	57.46

3.2 有机质丰度

有机质丰度是衡量和评价岩石生烃能力的重 要参数。目前有机质丰度指标主要有总有机碳含 量(TOC,%)、氯仿沥青"A"、总烃含量(HC,%)、 岩石热解参数(S₁+S₂,mg/g)等。

3.2.1 有机碳含量

沉积物中的碳主要以有机碳和碳酸盐岩2种 形式存在,有机碳含量是指岩石中存在于有机质中 的碳含量,是有机质丰度指标中的重要指标之一。

由直方图(图7)可知,寒武系样品TOC>

2%,属于好烃源岩。二叠系样品为碳酸盐岩,其 有机质丰度也属于好烃源岩。

3.2.2 生烃潜量

游离烃 S₁ 和岩石热解过程中干酪根热解生 成烃 S₂ 之和(S₁+S₂)构成生烃潜量,当有机质成 熟度和类型相同时,有机碳含量高,生烃潜量大, 但是有机质类型不同的烃源岩,有机碳含量相同 其生烃潜力可能不同,依此评价烃源岩的生烃能力。由表6可知,二叠系作为碳酸盐岩,其烃源岩 生烃潜量指标较泥岩要低,测试获得的结果绝对 值反而较高,因此,判定为很好的烃源岩;寒武系 黑色泥岩产烃率反而较低,解释为与年代久远出 露地表游离烃损失殆尽有关。

表 6 生烃潜量综合测试数据

Га	bl	е	6	_	H	ĺyd	lrocar	bon	generation	ı potential	based	on	test	dat	а
----	----	---	---	---	---	-----	--------	-----	------------	-------------	-------	----	------	-----	---

岩性	层位	可溶烃 S ₁ /(mg/g)	热解烃 S2 产 /(mg/g)	左油潜率(S1+S /(mg/g)	2) 产率指 数 PI	氢指数 HI /(mg/g)	有效碳 PC/%	降解率 D/%	烃指数 HCI /(mg/g)
深灰黑色灰岩	二叠系	0.08	0.21	0.29	0.28	41.18	0.02	4.72	15.69
深灰黑色灰岩	二叠系	0.07	0.31	0.38	0.18	39.74	0.03	4.04	8.97
深灰黑色泥岩	寒武系	0.01	0.07	0.08	0.13	2.76	0.01	0.26	0.39

3.2.3 氯仿沥青"A"

氯仿沥青"A"是岩石中可抽提有机质的丰度,反映残余可溶有机质的含量和生排烃作用的结果。在有机质相同情况下,氯仿沥青"A"含量越高,有机质向石油转化的程度越高,氯仿沥青 "A"与有机碳含量之比为有机质向油气转化的指标。由样品的氯仿沥青"A"频率分布直方图(图 8)可知,二叠系为灰岩系列好烃源岩。

3.3 有机质成熟度

最高热解峰温(T_{max})是判断有机质成熟度主要评价指标之一,测试结果表明二叠系、寒武系样品有机质分别达到高成熟一过成熟阶段(图 9)。

图 9 研究区烃源岩样品(二叠系、寒武系)T_{max} 分布直方图

Fig. 9 T_{max} distribution histogram of hydrocarbon source rocks samples in the study area (Permian, Cambrian)

3.4 岩石物性

测试结果表明,二叠系栖霞组含硅碳酸盐岩 的孔隙度均为 30%,水平渗透率分别为(50~ 150)×10⁻³ μm²,表明成岩溶蚀作用和孔隙连通 率一般,达到较好油气储层标准。

4 认识和讨论

下扬子地块苏皖次地块是南黄海盆地南部古 生代次地块在陆区的延伸部分,出露多套上下古 生界生烃层系。其中,寒武系幕府山组陆相黑色 泥岩有机碳含量高,产烃率一般;二叠系栖霞组海 相深灰黑色灰岩有机碳含量中等,产烃率较高;二 叠系深灰黑色灰岩干酪根类型Ⅰ型,寒武系黑色 泥岩干酪根类型以Ⅰ型为主,含Ⅱ型干酪根;二叠 系属于高成熟源岩,寒武系为过成熟源岩,总体评 价为好烃源岩,分别属于上下古生界主力生烃源 岩。其中,二叠系栖霞组臭灰岩既是好烃源岩又 是储集岩。

寒武系生烃潜量2个指标低于二叠系臭灰 岩,与其年代久远、呈碎屑状松散状分布,游离烃 损失殆尽有关。

该项认识恰好解释了在黄桥地区发现的二叠 系栖霞组灰岩溶蚀孔缝洞储层的大型二氧化碳气 田的成藏机制和模式^[19-23],二叠系灰岩具有同时 作为生储盖层,形成自生自储灰岩气藏能力;但这 与苏北盆地近几年在二叠系砂岩储层中发现的工 业油流不一样,还达不到海域油气经济价值油气 田规模的水平;但是臭灰岩却具备了这样的条件。

将此借鉴于南黄海盆地古生界油气勘探,是 在推测海域同样发育苏皖次地块相近沉积岩系和 该2套优质烃源岩和储集岩系并形成大气田的基 础上,但海陆区的演化可能非常不同。因此,有必 要进一步研究厘清南黄海盆地相接部分构造运动 的历程。

参考文献:

- [1] 张海啟,陈建文,李 刚,等.地震调查在南黄海崂山隆起的 发现及其石油地质意义[J].海洋地质与第四纪地质,2009, 29(3):107-113.
- [2] 刘小平,潘继平,刘东鹰,等.苏北地区下寒武统幕府山组页 岩气勘探前景[J].成都理工大学学报,2012,39(2):198-205.
- [3] 谢树成,殷鸿福,曹长群,等.二叠纪一三叠纪之交地球表 层系统的多幕式变化:分子地球生物学记录[J].古生物学 报,2009,48(3):487-496.
- [4] 康玉柱.中国古生代大型油气田成藏条件及勘探方向[M].
 天然气工业,2007,27(8):1-6.
- [5] 康玉柱,蔡希源,张传林,等.中国古生代海相油气田形成条 件与分布[M].乌鲁木齐:新疆科技卫生出版社,2002.

- [6] 金之钧.塔里木盆地油气富集规律的认识与大型油气田勘 探方向[J].世界石油工业,2004,11(5):30-33.
- [7] 秦建中,付小东,腾格尔.川东北宣汉一达县地区三叠一志 留系海相优质烃源层评价[J].石油实验地质,2008,30(4): 367-381.
- [8] 金之钧,刘光祥,方成名,等.下扬子区海相油气勘探选区评价研究[J].石油实验地质,2013,35(5):473-486.
- [9] 俞 凯,郭念发.下扬子区下古生界油气地质条件评价[J]. 石油实验地质,2001,23(1):41-46.
- [10] 陈践发,张水昌,孙省利,等. 海相碳酸盐岩优质烃源岩发 育的主要影响因素[J].地质学报, 2006,80(3): 467-472.
- [11] 高 林,周 雁.中下扬子区海相中-古生界烃源岩评价与 潜力分析[J].油气地质与采收率,2009,16(6):30-33.
- [12] 胡 芬. 南黄海盆地海相中、古生界油气资源潜力研究 [J]. 海洋石油,2010,30(3):1-8.
- [13] 胡 芬,江东辉,周兴海.南黄海盆地中、古生界油气地质 条件研究[J].海洋石油,2012,32(2):9-15.
- [14] 梁狄刚,郭彤楼,陈建平,等.南方四套区域性海相烃源岩的分布[J].海相油气地质,2008,13(2):1-16.
- [15] 林小云,刘 建,陈志良,等.中下扬子区海相烃源岩分布 与生烃潜力评价[J].石油天然气学报(江汉石油学院学 报):2007,29(3):15-19.
- [16] 刘金庆,许 红,孙 晶,等.下扬子海区南黄海盆地油气 勘探的几点认识[J].海洋地质前沿,2012,28(4):30-37.
- [17] 闫桂京,许 红,杨艳秋,苏北一南黄海盆地构造热演化特 征及其油气地质意义[J].天然气工业,2014,34(5):49-5.
- [18] 马立桥,陈汉林,董 庸,等.苏北一南黄海南部叠合盆地 构造演化与海相油气勘探潜力[J].石油与天然气地质, 2007,28(1):35-42.
- [19] 傅 宁,刘英丽,熊斌辉,等. CZ35-2-1 井古生界烃源岩地 球化学参数异常分析[J].中国海上油气(地质),2003,7 (2):93-98
- [20] 蔡乾忠.中国东部与朝鲜大地构造单元对应划分[J].海洋 地质与第四纪地质,1995,15(1):7-24.
- [21] 杨方之,等. 江苏黄桥二氧化碳气田[M].北京:石油工业 出版社,2011.
- [22] 任以发. 黄桥二氧化碳气田成藏特征与进一步勘探方向 [J]. 天然气地球科学, 2005, 16(5): 622-625.
- [23] 威厚发,戴金星.我国高含二氧化碳气藏的分布及成因探 讨[J].石油勘探与开发,1981,12(3):248-257.

CHARACTERISTICS OF THE SOURCE ROCKS FROM TWO PALEOZOIC GEOLOGICAL SECTIONS IN THE LOWER YANGTZE AND THE IMPLICATION FOR THE SOUTH YELLOW SEA BASIN

XU Hong^{1,2}, ZHANG Bolin^{2,3}, YU Hao⁴, YANG Yanqiu^{1,2}, SHI Jian^{1,2}, LIU Zhifei⁴,

ZHAO Xinwei^{2,5}, ZHU Yurui^{2,5}, LI Jianwei^{2,6}, LU Shushen^{2,5}, ZAHNG Haiyang^{2,5}

(1 Key Laboratory of Marine Resources & Environmental Geology, MLR, Qingdao 266071, China;

2 Qingdao Institute of Marine Geology, Qingdao 266071, China; 3 China University of Geosciences (Wuhan), Wuhan 430074, China;

4 Sinopec East China Branch of Petroleum Exploration and Development Research Institute, Nanjing 210036, China;

5 China University of Petroleum (East China), Qingdao 266580, China;

6 Shandong University of Science and Technology, Qingdao 266510, China)

Abstract: No Paleozoic drilling samples are available in the South Yellow Sea so far. It has brought difficulties to the oil and gas exploration in the region. However, there are 2 sections in the nearby region, i. e. the Lower Paleozoic Cambrian terrigenous mudstone deposits on the Mufu mountain of Nanjing and the Paleozoic Permian marine limestone in the Chaohu region of Anhui province, and both are dark grey to black in color. The former is now the target of shale gas exploration on the Yangtze continent, and the later consisting of silicified limestone is known as the "rotten limestone" widely exposed in the Yangtze region. Oil and gas geochemical testing confirms that both of them are high quality source rocks. Test of physical properties even shows that the latter could also be high quality reservoir rocks. The Lower Yangtze region was then a platform in Paleozoic, the deposits could be extended to the South Yellow Sea. Therefore, it is reasonable to extend the research results of the samples from the outcrops of the land area, to the South Yellow Sea, in particularly the Southern Depression of the South Yellow Sea Basin as potential hydrocarbon source rocks.

Key words: oil and gas geochemistry; source rocks; Permian stink limestone; Cambrian mudstone; Palaeozoic; Lower Yangtze landmass; the South Yellow Sea