辽东大东沟金矿岩浆岩LA−ICP−MS锆石 U−Pb年龄及岩石地球化学特征

李浩¹,李勇¹,马双¹,王鹏¹,魏 巍¹,樊金虎¹,郑 军¹,刘怀金² LI Hao¹,LI Yong¹,MA Shuang¹,WANG Peng¹,WEI Wei¹,FAN Jinhu¹, ZHENG Jun¹,LIU Huaijin²

1. 辽宁省第五地质大队有限责任公司, 辽宁大石桥 115100;
 2. 内蒙古有色地质矿业(集团)有限责任公司,内蒙古呼和浩特 010010

1. No. 5 Geological Party Limited Liability Company of Liaoning Province, Dashiqiao 115100, Liaoning, China;

2. Inner Mongolia Nonferrous Geological Mining Limited Liability Company, Hohhot 010010, Inner Mongolia, China

摘要:大东沟金矿位于华北克拉通北缘东段。对矿区内的岩浆岩进行了锆石U-Pb年代学和岩石地球化学研究。用LA-ICP-MS方法,测得花岗闪长岩和石英闪长岩中锆石²⁰⁷Pb/²⁰⁶Pb年龄加权平均值分别为2147±10Ma和140.8±1.2Ma,花岗闪长 岩经历了1874±18Ma的后期热液活动事件。元素地球化学测试结果显示,两者均为高钾钙碱性I型花岗岩类。石英闪长岩稀 土元素配分模式为明显的右倾模式,具有弱负Eu异常,而花岗闪长岩为平坦的右倾模式,具有明显的正Eu异常,两者呈现轻 稀土相对富集的特征。微量元素均富集Rb、Ba、K等大离子亲石元素。石英闪长岩表现为亏损Nb、Ta、Zr、Hf、Ti等高场强元 素,而花岗闪长岩表现为Th、Nb、Ta、Ti等高场强元素亏损。结合区域大地构造背景及相关研究认为,花岗闪长岩形成于大陆 弧后盆地的构造背景,主要是由约2.2Ca的岩浆底侵加热导致下地壳基性火成岩部分熔融而成;石英闪长岩形成于伊佐奈岐 板块向华北板块斜向俯冲的构造背景,具有壳幔混合的特征,为俯冲带流体交代地幔,使其部分熔融,形成基性岩浆与地壳熔 融物质混合而成的产物。

关键词:大东沟金矿;LA-ICP-MS锆石U-Pb年龄;地球化学;I型花岗岩;古元古代;早白垩世 中图分类号:P588.1;P597⁺.3 文献标志码:A 文章编号:1671-2552(2019)09-1543-13

Li H, Li Y, Ma S, Wang P, Wei W, Fan J H, Zheng J, Liu H J. LA-ICP-MS zircon U-Pb age and petrochemical characteristics of magmatite from the Dadonggou gold deposit in east Liaoning. *Geological Bulletin of China*, 2019,38(9): 1543-1555

Abstract: The Dadonggou gold deposit is located in the east of the northern margin of North China craton. In this paper, zircon U– Pb chronology and petrochemistry of magmatite from the Donggou gold deposit were studied. The LA–ICP–MS method was used and the ages of zircon in granodiorite and quartz diorite are $2147\pm10Ma(^{207}Pb/^{206}Pb$ age–weighted mean, n=17, MSWD=0.59) and $140.8\pm1.2Ma(^{206}Pb/^{238}U$ age–weighted mean, n=22, MSWD=0.48) respectively; nevertheless, the granite diorite experienced late hydrothermal events of $1874\pm18Ma$.Elemental geochemical test results show that both granodiorite and quartz diorite is a right–dipping model with weak negative Eu anomalies, but granodiorite is a relatively flat right–dipping model with obvious positive Eu anomalies; they both show characteristics of relatively rich light rare earth elements. As for trace elements, they are all enriched in large ion lithophile elements Rb, Ba and K. Quartz diorite is characterized by depletion of high field strength elements such as Nb, Ta, Zr, Hf and Ti, but the granodiorite shows the depletion of high field

作者简介:李浩(1990-),男,硕士,助理工程师,从事矿产资源勘查及研究工作。E-mail:1144371709@qq.com

收稿日期: 2018-07-10;修订日期:2018-10-30

资助项目:辽宁省地质勘探矿业集团有限责任公司科技项目《大东沟地区低品位金矿赋存特征及成因研究》(编号:KJ201802)

通讯作者:李勇(1963-),男,教授级高级工程师,从事地质矿产勘查工作。E-mail:ldwddzk@163.com

strength elements such as Th, Nb, Ta and Ti. Combined with regional tectonic evolution and related studies, the authors have reached the conclusion that granodiorite was formed in the tectonic background of continental back-arc basin, mainly caused by partial melting of the lower crustal igneous rocks due to the magmatic heating action of ~ 2.2 Ca. However, quartz diorite was formed in the tectonic background of the oblique subduction of Izanagi plate to the North China plate, which had the feature of crust-mantle mixing. It was the fluid metasomatic mantle in the subduction zone, and the basic magma formed by partial melting was mixed with the crust molten material.

Key words: Dadonggou gold deposit; LA-ICP-MS zircon U-Pb age; geochemistry; I-type granite; Paleoproterozoic; Early Cretaceous

辽东古元古代裂谷是胶-辽-吉活动带的重 要组成部分,裂谷内分布一系列大中小型金矿床, 如白云金矿、猫岭金矿、五龙金矿、林家三道沟金 矿、四道沟金矿等。大东沟金矿位于盖州市北东 13km、大石桥市南20km,行政区隶属于辽宁省盖州 市青石岭镇、团甸镇及大石桥市博洛堡镇管辖。20 世纪80年代以来,辽宁省第五地质大队在大东沟地 区多次开展金矿普查工作,2009年通过普查工作, 提交金储量(333)6.4t, 矿床平均品位为2.03×10⁻⁶。 初步判断该矿床具有规模大、品位低的特点,矿体 主要呈似层状、透镜状赋存于盖县岩组绢云千枚岩 中,与猫岭金矿床地质特征类似,具有进一步找矿 空间。研究区内发育石英闪长岩和花岗闪长岩,从 地质特征看,石英闪长岩与金矿的形成关系密切。 目前该矿床尚处于普查阶段,矿区岩浆岩测年和地 球化学特征的研究工作尚处于起步阶段。本文通 过对石英闪长岩和花岗闪长岩进行LA-ICP-MS 锆 石U-Pb测年和元素地球化学研究,探讨其形成时 代、岩浆起源和构造背景,为矿区成矿规律研究和 找矿工作提供新的依据。

1 区域地质背景

大东沟金矿大地构造位置处于华北克拉通北缘 东段,辽东营口-宽甸隆起的西部,盖县-古楼子复 向斜西端北翼。裂谷带可划分为北缘斜坡、中央凹陷 和南缘浅台(图1),以盖县—析木城—塔子岭—茳草 甸子—叆阳—线为界,将北缘斜坡区的火山-沉积变 质岩系称为北辽河群,而中央凹陷和南缘浅台的火 山-沉积变质岩系称为南辽河群^[2]。北辽河群由浪子 山岩组、里尔峪岩组、高家峪岩组、大石桥岩组和盖县 岩组自下而上构成,而南辽河群缺失浪子山岩组。区 域上出露地层主要为古元古界辽河群、少量新元古界 青白口系钓鱼台组及新生界第四系。区域侵入岩主 要有古元古代条痕状二长花岗岩、巨斑状花岗岩和基 性、超基性岩,印支期闪长岩、花岗岩和碱性岩,燕山 期闪长岩、二长花岗岩、花岗闪长岩等。区内构造极 发育,主要为吕梁期裂谷内形成的近东西向褶皱和断 裂构造及印支一燕山期叠加的北北东向、北东向和北 西向断裂构造。

2 矿区地质

研究区出露地层主要为古元古界辽河群盖县 岩组二岩段(Pt₁lhgx²)绢云千枚岩夹薄层变质石英 砂岩,新元古界青白口系钓鱼台组二段(Qnd²)厚层 变质石英砂岩夹粘土页岩、变质长石石英砂岩,以 及新生界第四系(Q)(图2)。区内岩浆岩较发育,主 要为古元古代高丽山岩体和白垩纪卧龙岗岩体及 部分脉岩。高丽山岩体主要岩石类型为花岗闪长 岩,卧龙岗岩体主要岩石类型为黑云母石英闪长 岩,均呈岩株状产出。研究区受多期变质变形作用 影响,其构造形态较复杂,具有近东西向展布的特 征。褶皱构造自北向南可划分为石砬山背斜、神树 山向斜、七间房 - 高丽山向斜、达子堡背斜、腰岭子 向斜;断裂构造按其展布方向和形成的先后大致分 为北西向、北西西一东西向、北东向3组。矿体主要 赋存于绢云千枚岩中,呈似层状、透镜状和脉状北 西向展布,总体呈宽缓的背斜,北东翼产状:30°~ 35°∠15°~31°,南西翼产状:215°∠10°~18°。矿石 矿物主要为黄铁矿、磁黄铁矿,少量毒砂、白铁矿, 微量黄铜矿:脉石矿物主要为石英、绢云母,次为方 解石,少量电气石、绿泥石。矿石结构以半自形-他 形粒状结构为主,碎裂结构、糜棱结构次之。矿石 呈层纹状-条带状构造、星点状构造、浸染状构造、 致密块状构造等。

3 测试方法及结果

3.1 测试方法

用于主量和微量元素成分测试的样品新鲜无 蚀变,样品制备和测试在核工业北京地质研究院分 析测试研究中心完成。主量元素采用X射线荧光

图 1 辽东古元古代裂谷地质构造简图(据参考文献[1]修改) Fig. 1 Simplified geological-structural map of Liaodong Paleoproterozoic rift 1-太古宙古陆;2-北缘斜坡;3-中央凹陷;4--南缘浅台;5--构造岩相带界线;6、7--吕梁旋回主要背斜与向斜;8--郑庐断裂系;9--地名

光谱仪(XRF)进行测试,分析方法见Qi等^[3];微量 元素分析采用电感耦合等离子体质谱仪(ICP-MS) 完成,使用仪器为Agilent7500a型等离子体质谱仪, 分析方法见李晓彪^[4]。锆石样品的制靶和阴极发光 (CL)图像拍摄在廊坊市地岩矿物分选有限公司完 成。锆石U-Pb同位素测试在国家地质实验测试中 心使用激光剥蚀 – 电感耦合等离子体质谱仪(LA-ICP-MS),配备 NEW WAVE esi 193nm激光剥蚀系 统和 Thermo ELMENT XR 扇形磁场高分辨质谱 仪。本次测试分析质量监控样品为Plesovice 锆石, 每分析 10 个样品点插入分析国际标准锆石样品 GJ-1(2点)及Plesovice(1点)^[5-6]。原始数据处理采 用 Glitter(4.0版)程序完成,年龄加权平均计算和 U-Pb 谐和图绘制采用 Isoplot 程序^[7]完成。测试结 果见表1。

3.2 锆石U-Pb同位素

3.2.1 微细粒斑状花岗闪长岩(DD08)

花岗闪长岩样品采自矿区采石场,岩石表面被

风化成土状,新鲜面呈浅灰色(图版 [-a), 似斑状 结构,块状构造。斑晶为石英、斜长石(图版]-b、 c),其中石英(5%~10%)、斜长石少量。基质为微细 粒花岗结构,主要为斜长石(60%~65%)、钾长石(约 10%)、石英(15%~20%)、白云母(约5%)和少量黑云 母。锆石以自形-半自形短柱状、长柱状晶形为主, 少量不规则状,部分锆石破碎并发育裂隙,长轴粒 径在60~200µm之间,长短轴比在1~4之间。CL 图像显示,大部分锆石发育清晰的振荡环带结构, 部分发育暗色的变质增生边(图3)。通常岩浆锆石 的Th、U含量较高,Th/U>0.4,而变质成因锆石的 Th、U含量较低,且Th/U<0.1^[8-10]。从表1可以看 出,U、Th含量分别介于48×10⁻⁶~590×10⁻⁶和34× 10⁻⁶~516×10⁻⁶之间,其Th/U值介于0.21~1.65之 间,表明其为岩浆成因。20个测点给出的锆 石²⁰⁷Pb/²⁰⁶Pb年龄介于1874~2191Ma之间,结合CL 图像判断,2号点给出的1874±18Ma年龄应为后期 热液活动时间;17个测点的上交年龄值2137±25Ma

图2 大东沟金矿地质图

Fig. 2 Geological map of the Dadonggou gold deposit

1—第四系;2—灰色矿化绢云千枚岩;3—深灰色绢云千枚岩;4—含炭绢云千枚岩;5—含绿泥绢云千枚岩;6—变质石英砂岩; 7—黑云母化绢云千枚岩;8—黑云母角岩;9—黑云母石英闪长岩;10—花岗闪长岩;11—云英岩;12—钠长斑岩;13—水库; 14—性质不明断层;15—挤压破碎带;16—采样位置;17—勘探线位置及编号;18—钻孔位置及编号;19—村庄

(MSWD=2.6)与²⁰⁷Pb/²⁰⁶Pb年龄加权平均值2147±10Ma(MSWD=0.59)(图4-a)相近,年龄加权平均值可代表花岗闪长岩的侵位年龄。

3.2.2 黑云母石英闪长岩(DD09)

石英闪长岩采自矿区采石场,岩石新鲜面为灰 色,半自形粒状结构,块状构造(图版 I – d),岩石中 暗色包体发育(图版 I – e)。主要矿物成分为斜长石 (55%~60%)、石英(20%左右)、角闪石(10%~15%)、 黑云母(5%~10%)、钾长石(5%)。岩石蚀变弱,蚀变 矿物为绢云母、绿泥石及少量不透明矿物(图版 I – f)。锆石主要呈半自形短柱状,部分为长柱状和浑圆 状,长轴方向粒径在45~190μm之间,长短轴比在 1~3之间。CL图像显示,大部分锆石具有明暗相间 的韵律环带结构,具有典型的岩浆结晶锆石特征(图 3)。锆石的U、Th含量分别介于54×10⁻⁶~163×10⁻⁶ 和72×10⁻⁶~326×10⁻⁶之间,其Th/U值介于1.04~ 2.00之间(表1),具有岩浆成因特征。25个测点给出 的锆石²⁰⁶Pb/²³⁸U年龄介于130~144Ma之间,其中22 个测点的²⁰⁶Pb/²³⁸U年龄加权平均值为140.8±1.2Ma (MSWD=0.48)(图版 I -b),该加权平均年龄可代表 石英闪长岩的侵位年龄。

3.3 岩石地球化学

3.3.1 主量元素

主量元素分析结果(表2)显示,花岗闪长岩具 有较高的SiO₂(71.97%~72.06%)、Al₂O₃(14.88%~ 15.25%)、CaO(3.24%~3.71%)、K₂O(4.17%~4.38%),

	今昰/10 ⁻⁶ Th/			同位素比值						在 龄/Ma						
测点号	Ph	Th	U	U	²⁰⁷ Pb/ ²³⁵ U	10	²⁰⁶ Pb/ ²³⁸ U	10	²⁰⁷ Ph/ ²⁰⁶ Ph	10	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Ph/ ²⁰⁶ Ph	1σ
DD08-1	351	54	63	0.87	7.96461	0.18704	0.43743	0.00615	0.1349	0.00174	2227	21	2339	28	2163	22
2	2623	516	590	0.87	5.29804	0.07447	0.33184	0.00445	0.11465	0.00118	1869	12	1847	22	1874	18
3	197	34	48	0.71	7.32554	0.29407	0.40871	0.00653	0.13393	0.00258	2152	36	2209	30	2150	33
4	307	38	56	0.69	8.26433	0.17607	0.45327	0.00627	0.13379	0.00163	2260	19	2410	28	2148	21
5	593	91	93	0.98	7.66163	0.13664	0.42445	0.00577	0.13272	0.00149	2192	16	2281	26	2134	20
6	517	69	98	0.71	7.55391	0.15626	0.4103	0.00565	0.13229	0.00161	2179	19	2216	26	2129	21
7	258	39	66	0.60	7.07075	0.1314	0.39822	0.00543	0.13329	0.00155	2120	17	2161	25	2142	20
8	724	99	131	0.76	7.03708	0.17647	0.38628	0.00548	0.13714	0.00189	2116	22	2106	25	2191	24
9	750	116	125	0.93	6.94606	0.1178	0.36792	0.00497	0.13414	0.00149	2105	15	2020	23	2153	19
10	827	129	141	0.91	7.6063	0.15172	0.42351	0.00579	0.13358	0.00159	2186	18	2276	26	2146	21
11	466	99	91	1.08	7.1141	0.13686	0.41021	0.00558	0.13203	0.00157	2126	17	2216	25	2125	21
12	450	94	76	1.24	7.3301	0.17625	0.40491	0.00566	0.13453	0.0018	2153	21	2192	26	2158	23
13	452	118	156	0.75	4.8441	0.08304	0.28008	0.00377	0.12363	0.00144	1793	14	1592	19	2009	20
14	872	189	115	1.65	7.39634	0.13693	0.39855	0.00538	0.13238	0.00154	2161	17	2162	25	2130	20
15	325	60	74	0.82	7.70733	0.15562	0.38722	0.00526	0.13274	0.0016	2198	18	2110	24	2135	21
16	366	71	106	0.67	7.53115	0.14242	0.41168	0.00556	0.13289	0.00156	2177	17	2223	25	2137	20
17	423	80	123	0.65	5.79661	0.1105	0.29586	0.00401	0.13491	0.00164	1946	17	1671	20	2163	21
18	325	61	284	0.21	3.98935	0.06076	0.25093	0.00333	0.11658	0.00129	1632	12	1443	17	1905	20
19	315	60	88	0.68	7.04878	0.13114	0.39017	0.00525	0.13502	0.00159	2118	17	2124	24	2164	20
20	559	109	99	1.10	7.13277	0.14496	0.40243	0.00546	0.13439	0.00165	2128	18	2180	25	2156	21
DD09-1	72	186	122	1.52	0.15074	0.00584	0.02231	0.0004	0.05026	0.0019	143	5	142	3	207	86
2	30	77	74	1.04	0.14841	0.00931	0.02255	0.00054	0.04703	0.00293	141	8	144	3	51	143
3	43	111	97	1.15	0.14748	0.00621	0.02221	0.00042	0.04728	0.00196	140	6	142	3	63	96
4	26	72	54	1.32	0.14452	0.01439	0.02052	0.00079	0.05422	0.00547	137	13	131	5	380	213
5	30	91	55	1.66	0.15012	0.00972	0.02157	0.00056	0.04928	0.0032	142	9	138	4	161	145
6	64	168	88	1.91	0.15022	0.00912	0.02235	0.00052	0.04737	0.00285	142	8	143	3	67	138
7	53	131	91	1.44	0.1697	0.01381	0.02035	0.00065	0.06267	0.00512	159	12	130	4	697	165
8	99	278	163	1.71	0.14874	0.00888	0.02171	0.00049	0.04879	0.00288	141	8	138	3	138	133
9	66	172	116	1.48	0.15162	0.01309	0.02208	0.00067	0.0498	0.00428	143	12	141	4	186	188
10	109	298	157	1.90	0.14694	0.00769	0.02193	0.00045	0.0474	0.00244	139	7	140	3	69	119
11	63	202	105	1.92	0.14598	0.00744	0.02153	0.00045	0.04932	0.00248	138	7	137	3	163	114
12	105	326	163	2.00	0.14377	0.00412	0.02069	0.00032	0.04955	0.00135	136	4	132	2	174	63
13	51	155	93	1.66	0.14699	0.00773	0.02175	0.00046	0.04896	0.00255	139	7	139	3	146	118
14	36	105	65	1.62	0.14864	0.00536	0.02248	0.0004	0.04727	0.00167	141	5	143	3	63	83
15	28	89	66	1.35	0.1495	0.01099	0.0218	0.0006	0.05197	0.00382	142	10	139	4	284	159
16	46	138	69	2.00	0.14841	0.00856	0.02186	0.0005	0.05002	0.00286	141	8	139	3	196	128
17	28	90	74	1.21	0.14982	0.00526	0.02209	0.00038	0.04819	0.00165	142	5	141	2	109	79
18	56	165	119	1.39	0.14633	0.00425	0.02189	0.00035	0.05003	0.00139	139	4	140	2	197	63
19	25	81	66	1.23	0.15233	0.00996	0.02222	0.00056	0.05113	0.00333	144	9	142	4	247	143
20	57	172	100	1.72	0.14889	0.00461	0.02236	0.00036	0.04772	0.00142	141	4	143	2	85	70
21	41	115	65	1.77	0.15132	0.00582	0.0225	0.00041	0.05048	0.0019	143	5	143	3	217	85
22	46	118	80	1.47	0.14952	0.00699	0.02225	0.00044	0.04808	0.00221	142	6	142	3	103	105
23	34	99	74	1.34	0.14947	0.00886	0.02175	0.0005	0.04881	0.00287	141	8	139	3	139	132
24	50	145	125	1.16	0.1472	0.00815	0.02168	0.00047	0.04965	0.00271	139	7	138	3	179	123
25	55	162	116	1.39	0.15003	0.00593	0.0223	0.0004	0.05048	0.00195	142	5	142	3	217	87

表1 大东沟金矿区花岗闪长岩和石英闪长岩锆石U-Th-Pb同位素测试结果

Table 1 The zircon U-Th-Pb isotopic test results for granodiorite and quartz diorite in the Dadonggou gold deposit

a.花岗闪长岩;b.花岗闪长岩镜下照片(-);c.花岗闪长岩镜下照片(+);d.石英闪长岩;e.石英闪长岩中的暗色包体; f.石英闪长岩镜下照片(+)。Q一石英;PI一斜长石;Bi一黑云母;Aml一角闪石;Chl一绿泥石

图 3 花岗闪长岩(DD08)和石英闪长岩(DD09)锆石阴极发光图像及U-Pb年龄 (DD08为³⁰Pb/³⁰Pb年龄,DD09为³⁰Pb/³⁸U年龄)

Fig. 3 The cathodoluminescence images and U-Pb ages of zircon grains for granodiorite (DD08) and quartz diorite (DD09)

图4 大东沟矿区岩浆岩锆石U-Pb谐和图及年龄

Fig. 4 Zircon U-Pb condordia diagrams and weighted average age diagrams of magmatite from the Dadonggou deposit

较低的 Na₂O (0.57% ~0.59%)、TFe₂O₃ (2.06% ~ 2.32%)、MnO(0.07%~0.07%)、MgO(0.29%~0.33%)、TiO₂ (0.10%~0.10%), Mg[#]值为 18.04~18.51, 低的 Na₂O 主要由蚀变引起;全碱(Na₂O+K₂O)为4.74%~ 4.97%, K₂O/Na₂O 值大于1,相对富钾;里特曼指数为 0.77~0.58, 为钙碱性;铝饱和指数 A/CNK为 1.19~1.34。在SiO₂-K₂O 图解上落入高钾钙碱性系

列(图 5-a),在A/CNK-A/NK图解上落入过铝质 范围内(图 5-b),岩石属高钾钙碱性花岗岩。

石英闪长岩的 SiO₂含量为 58.67%~58.70%,具 有较高的 Al₂O₃(15.95%~15.95%)、TFe₂O₃(6.71%~ 6.74%)、CaO(5.78%~5.80%)、MgO(4.84%~4.88%)、 Mg[#](58.51~58.74);较低的 TiO₂(0.64%~0.65%)、 MnO(0.11%~0.11%),全碱(Na₂O+K₂O)为 6.12%~

|--|

 Table 2 Analytical results of major, trace and rare earth elements from granodiorite and quartz diorite in the Dadonggou gold deposit

一志	DD002	DD004	DD006	DD007	一志	DD002	DD004	DD006	DD007
儿系	石英闪长岩	石英闪长岩	花岗闪长岩	花岗闪长岩	儿系	石英闪长岩	石英闪长岩	花岗闪长岩	花岗闪长岩
SiO ₂	58.67	58.7	71.97	72.06	Nb	9.24	9.28	3.52	3.36
TiO ₂	0.654	0.639	0.102	0.097	Cs	6.12	5.71	3.28	3.79
Al_2O_3	15.95	15.95	14.88	15.25	Ba	865	830	1241	1302
TFe_2O_3	6.71	6.74	2.32	2.06	Hf	1.05	0.945	2.2	2.19
MnO	0.106	0.106	0.067	0.068	Та	0.699	0.704	0.353	0.318
MgO	4.88	4.84	0.329	0.294	Tl	0.591	0.669	0.443	0.402
CaO	5.78	5.8	3.71	3.24	Pb	20	20.2	13.5	14.5
Na_2O	3.24	3.21	0.59	0.57	Th	11	10	3.22	3.73
K_2O	2.9	2.91	4.38	4.17	U	2.08	2.5	2.15	1.69
P_2O5	0.233	0.222	0.029	0.033	La	40.4	39.2	2.6	2.45
烧失量	0.47	0.47	1.19	1.73	Ce	74	72.9	4.69	4.33
总计	99.06	99.07	99.39	99.43	Pr	8.45	8.25	0.566	0.522
FeO	5.33	5.22	1.79	1.43	Nd	32.7	31.7	2.31	2.07
Na ₂ O+K ₂ O	6.14	6.12	4.97	4.74	Sm	5.81	5.79	0.514	0.483
K ₂ O/Na ₂ O	0.9	0.91	7.42	7.32	Eu	1.57	1.55	0.36	0.378
$Mg^{\#}$	58.51	58.74	18.04	18.51	Gd	5.13	5.05	0.645	0.622
A/NK	1.88	1.89	2.6	2.79	Tb	0.82	0.825	0.154	0.142
A/CNK	0.84	0.84	1.19	1.34	Dy	4.16	4.23	1.08	0.964
σ ₄₃	2.35	2.33	0.85	0.77	Но	0.801	0.808	0.246	0.213
Li	24.8	30.1	12.4	13.9	Er	2.2	2.18	0.733	0.649
Be	2.02	2.02	1.24	1.28	Tm	0.365	0.368	0.128	0.115
Sc	16.4	15.8	1.08	1.07	Yb	2.29	2.32	0.819	0.76
V	143	141	5.37	5.39	Lu	0.308	0.331	0.113	0.111
Cr	213	201	5.25	3.35	Y	20.8	20.4	6.41	5.84
Со	20.8	20.3	1.1	0.972	ΣREE	179	175.5	14.96	13.81
Ni	52.2	48.8	2.16	1.76	LREE/HREE	10.14	9.89	2.82	2.86
Cu	20.5	24.3	6.25	6.03	(La/Yb) _N	12.65	12.12	2.28	2.31
Zn	77.9	75.1	32.3	33	δEu	0.88	0.88	1.91	2.11
Ga	20.5	19.6	16.6	16.3	δCe	0.98	0.99	0.95	0.94
Rb	99.9	103	125	119	Nb/Ta	13.22	13.18	9.97	10.57
Sr	612	587	104	142	Rb/Sr	0.16	0.18	1.2	0.84
Zr	17.5	16	52.9	50.9					

注:Mg[#]=[100Mg/(Mg+TFe)];A/NK=[Al₂O₃/(Na₂O+K₂O)](mol);A/CNK=[Al₂O₃/(CaO+Na₂O+K₂O)](mol); \sigma₄₃=(Na₂O+K₂O)²/(SiO₂-43);主量元素含量单位为%,微量和稀土元素含量单位为10⁻⁶

图 5 大东沟矿区岩浆岩 SiO₂-K₂O 图解^[11](a)和A/CNK-A/NK图解^[12](b) Fig. 5 SiO₂-K₂O (a) and A/CNK-A/NK (b) diagrams of magmatite from the Dadonggou deposit

6.14%, K₂O/Na₂O值小于1,相对贫钾;里特曼指数 为2.33~2.35,为钙碱性;铝饱和指数A/CNK为 0.84~0.84,属准铝质。在SiO₂-K₂O图解上落入高 钾钙碱性系列(图5-a),在A/CNK-A/NK图解上 落入准铝质范围(图5-b),岩石属高钾钙碱性准铝 质花岗岩类。

3.3.2 微量和稀土元素

微量和稀土元素分析结果(表2)显示,石英闪 长岩的稀土元素总量(ΣREE)较高,介于175×10⁻⁶~ 179×10⁻⁶之间,而花岗闪长岩的稀土元素总量偏低, 仅为13.81×10⁻⁶~14.96×10⁻⁶。两类岩石轻重稀土元 素比值 LREE/HREE 分别为 9.89~10.14 和 2.82~ 2.86。在稀土元素球粒陨石标准化曲线模式图(图 6-a)上,石英闪长岩表现为明显的右倾模式,花岗 闪长岩则为相对平坦的右倾模式,(La/Yb)^N值分别 为12.12~12.65和2.82~2.31,呈现轻稀土元素相对富 集的特征。石英闪长岩具有弱负 Eu 异常,δEu= 0.88~0.88,而花岗闪长岩具有明显的正 Eu 异常, δEu=1.91~2.11。

在微量元素原始地幔标准化蛛网图(图6-b) 上,两类岩浆岩均富集Rb、Ba、K等大离子亲石元素 (LILE)。石英闪长岩表现为Nb、Ta、Zr、Hf、Ti等高

图 6 大东沟矿区岩浆岩稀土元素球粒陨石标准化图解(a)和微量元素原始地幔标准化蛛网图(b)(标准化数值据参考文献[13]) Fig. 6 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams(b) of magmatite from the Dadonggou deposit

场强元素(HFSE)的亏损,而花岗闪长岩表现为Th、 Nb、Ta、Ti等高场强元素的亏损。

4 讨 论

4.1 岩体成岩时代

本文通过对石英闪长岩和花岗闪长岩锆石U-Pb定年,测得其加权平均年龄分别为140.0±1.4Ma和2147±10Ma,代表了岩浆结晶侵位的年龄,表明石英闪长岩形成于早白垩世,花岗闪长岩形成于古元古代。此外,花岗闪长岩2号点获得的年龄为1874±18Ma,结合锆石CL图像(图3),其应为后期变质作用发生的时间,这与区域上辽河群普遍存在约1.90Ga^[14-15]的变质作用吻合。

区域上的相关研究表明,辽河群的变质沉积岩 系盖县岩组形成时代为2.0~1.90Ga,并于约1.90Ga 发生变质作用^[14-18]。大东沟金矿花岗闪长岩的年龄 为2147±10Ma,早于盖县岩组形成的时间。因此, 笔者认为大东沟金矿的花岗闪长岩为盖县岩组沉 积的局部基底,并为其提供一定的物源,同时一起 受到后期变质作用的影响。

4.2 岩体成因及源区组成

花岗闪长岩具有高的SiO₂(71.97%~72.06%)、 K₂O含量(4.17%~4.38%)和K₂O/Na₂O值(7.32~ 7.42),幔源组分Cr(3.35×10⁻⁶~5.25×10⁻⁶)和Ni (1.76×10⁻⁶~2.16×10⁻⁶)含量低,表明岩浆源区主要 为壳源物质。野外可见其风化强烈,镜下见绢云母 化、绿泥石化等蚀变发育,暗示铝饱和指数A/CNK (1.19~1.34)偏高及Na₂O(0.57%~0.59%)偏低可能是 岩石蚀变造成的。石英闪长岩的SiO₂含量为 58.67%~58.70%,铝饱和指数A/CNK为0.84~0.84 (<1.1),CaO含量为5.78%~5.80%(>3.7%),K₂O/ Na₂O值为0.90~0.91(<1),这些特征表明石英闪长 岩具有 I型花岗岩类特征^{119]}。在10000Ga/Al-Nb 图解(图7-a)中,两者均落入I和S型花岗岩区域, 在ACF图解(图7-b)中,两者均落入I型花岗岩区 域,表明两者均为高钾钙碱性I型花岗岩类。

石英闪长岩富集轻稀土元素(LREE)和LILE, 亏损HFSE,不相容元素Nb、Ta、Ti具有明显的负异 常,显示出俯冲幔源岩石的特征^[13,22],也可能是岩浆 受到地壳物质的混染,或是岩浆源区残留富Nb、 Ta、Ti的矿物所致^[23]。其幔源组分Cr(201×10⁻⁶~ 203×10⁻⁶)和Ni(48.8×10⁻⁶~52.2×10⁻⁶)高,Rb/Sr值 为0.16~0.18,介于上地慢值(0.034)与地壳值(0.35) 之间^[24];Nb/Ta值为13.18~13.22,介于地壳平均值 (11~13)^[25]和地慢平均值(17.5)^[13]之间,且岩体内部 含有暗色包体(图版 I -e)。据此判断石英闪长岩 的形成与俯冲作用有关,具有壳幔混合的特征,为 俯冲带流体交代地幔,使其部分熔融形成基性岩浆 与地壳熔融物质混合而成的产物。花岗闪长岩的 Rb/Sr值为0.84~1.20,明显大于地壳值(0.35);

图7 大东沟矿区岩浆岩 10000Ga/Al-Nb图解(a)²⁰和ACF图解(b)²¹ Fig. 7 10000Ga/Al-Nb diagram(a) and ACF diagram (b) of magmatite from the Dadonggou deposit I,S—分别为1型和S型花岗岩

Fig. 8 Discrimination diagram of source rocks for granodiorite from the Dadonggou deposit

Nb/Ta 值为 9.97~10.57, 接近平均地壳值(11~13)^[25]。在 CaO/(MgO + TFeO)与 A1₂O₃/(MgO + TFeO)源区岩石判别图解中,花岗闪长岩落入基性岩的部分熔融范围(图8),表明其源区主要为基性火成岩。因此,笔者认为,花岗闪长岩为下地壳基性火成岩部分熔融的产物,而 Nb、Ta、Ti 的相对亏损可能是继承了其源区物质的地球化学特征。

4.3 岩体形成的构造背景

1

研究区位于华北板块北缘东段,古元古代受 胶-辽-吉活动带的影响,中生代受到古亚洲洋构造

Y/10-6

10

ORG

100

域和滨太平洋构造域的双重影响,构造演化极其 复杂。

关于胶 - 辽 - 吉古元古代活动带的构造演化 背景一直存在争议,部分学者认为是陆内裂谷开 启 - 闭合的构造背景^[26-32];另一部分学者认为是 弧 - 陆或陆 - 陆碰撞的构造背景^[33-41]。李壮等^[17]和 陈斌等^[15]研究认为,胶 - 辽 - 吉活动带存在一期约 2.2Ga的弧岩浆作用。在Y-Nb和(Y+Nb)-Rb构造 图解(图9)中,花岗闪长岩落入火山弧和同碰撞及 火山弧区并靠近同碰撞区。综上所述,花岗闪长岩 形成于大陆弧后盆地的构造背景,由约2.2Ca的岩 浆底侵加热作用导致下地壳基性火成岩部分熔融 而成。落在火山弧区可能是继承了源区物质的地 球化学特征,靠近同碰撞区说明在其形成或侵位过 程中有泥质成分的混入,或源岩中有再循环地幔物 质的混入^[43-44]。

华北克拉通在晚侏罗世一早白垩世(158~ 135Ma)发生了重要的成岩、成矿事件及构造体质的 转换。蒙古-鄂霍茨克海于晚侏罗世一早白垩世 发生了闭合,古亚洲大陆形成,同时又叠加了西太 平洋伊佐奈岐洋壳板块斜向俯冲的影响^[45-47]。石英 闪长岩在Y-Nb和(Y+Nb)-Rb构造图解(图9)中, 落入火山弧/同碰撞及火山弧区,为陆缘弧岩浆作 用的产物,形成于伊佐奈岐板块斜向俯冲于华北板 块之下的构造背景。

4.4 岩体与成矿的关系

大东沟金矿主要呈似层状、透镜状赋存于盖县 岩组。综上所述,研究区盖县岩组形成时代为2.0~

图9 大东沟矿区岩浆岩 Y-Nb(a)和(Y+Nb)-Rb(b)构造环境图解[42]

1000

Fig. 9 Y-Nb (a) and (Y+Nb)-Rb (b) diagrams of tectonic discrimination of magmatite from the Dadonggou deposit VAG-火山弧花岗岩;syn-COLG-同碰撞花岗岩;WPG-板内花岗岩;ORG-洋脊花岗岩

1.90Ga,花岗闪长岩的侵位年龄为2147±10Ma,早于 盖县岩组形成的时间,为盖县岩组沉积的局部基 底,并为其提供一定的物源,同时一起受到后期变 质作用的影响。石英闪长岩侵位年龄为140.0± 1.4Ma,形成于早白垩世,与晚侏罗世一早白垩世重 要的成岩、成矿事件吻合。

花岗闪长岩与盖县岩组为构造接触,围岩内基 本不发育接触变质带;而在石英闪长岩的外围明显 发育宽约300m的黑云母化蚀变带,带内发育透镜 状的黑云母角岩(图2),为热接触交代变质作用的 结果。据此笔者认为,研究区石英闪长岩的侵位与 成矿关系密切,同时不排除盖县岩组对金矿形成的 贡献。

5 结 论

(1)大东沟金矿花岗闪长岩的LA-ICP-MS锆石 U-Pb年龄为2147±10Ma,侵位于古元古代;石英闪长岩的LA-ICP-MS锆石 U-Pb年龄为140.0±1.4Ma,侵位于早白垩世。

(2)岩石地球化学研究表明,大东沟金矿的花 岗闪长岩和石英闪长岩均为高钾钙碱性I型花岗岩 类岩石,花岗闪长岩源区主要为壳源,石英闪长岩 具有壳幔混合的特征。

(3)花岗闪长岩形成于大陆弧后盆地的构造背景,由约2.2Ca的岩浆底侵加热作用导致下地壳基 性火成岩部分熔融而成;石英闪长岩为陆缘弧岩浆 作用的产物,形成于伊佐奈岐板块斜向俯冲于华北 板块之下的构造背景。

(4)区域和矿区地质特征表明,大东沟金矿石 英闪长岩的侵位与成矿关系最为密切,同时不排除 盖县岩组对金矿形成的贡献。

致谢:在野外工作期间辽宁省第五地质队有限 责任公司刘显高高级工程师给予了悉心指导和帮助,锆石U-Pb同位素测试由中国地质科学院国家 地质实验测试中心的赵令浩博士完成,审稿专家对 本文进行了细致的审阅并提出了大量建设性修改 意见,在此一并表示感谢。

参考文献

- [1]陈荣度,李显东,张福生.对辽东古元古代地质若干问题的讨论[J]. 中国地质,2003,(2):207-213.
- [2]陈荣度.辽东裂谷的地质构造演化[J].中国区域地质,1990,(4): 306-315,333.

- [3]Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J].Talanta, 2000,51(3):507-513.
- [4]李晓彪.热电离质谱(TIMS)的Sr-Nd-Pb同位素标样测定[J].矿物学报,2009,29(S1):609-610.
- [5]Jackson S E, Pearson N J, Grifin W L, et al. The application of laser ablation-inductively coupled plasma-masss spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology, 2004, 211: 47– 69.
- [6]Slama J, Kosler J, Condon D J, et al. Plesovicezircon: A new natural reference material for U– Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1–35.
- [7]Ludwig K R.User's manual for Isoplot 3.00: Ageochronological toolkit for Microsoft Excel[M].Berkeley Geochronology Center Special Publication, 2003.
- [8]Rubatto D, Gebauer D. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps, Germany: Cathodoluminescence in Geosciences[M]. Springer-Verlag Berlin Heidelberg, 2000:373-400.
- [9]Moller A, O'Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:an example from the ultrahigh- temperature granulites of Rogaland (SW Norway) [J].Geological Society of London Special Publications, 2003,220(1):65-81.
- [10]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的 制约[J].科学通报,2004,(16):1589-1604.
- [11]Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J].Lithos, 1989, 22(4):247-263.
- [12]Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635–643.
- [13]Sun S S, McDonough W F. Chemical and isotopm systematics of oceanic basalts: Implications for mantle composition and processes[C]// Saunders A D, Vony M J. Magmatism in the Ocean Basins. Geological Society Special Publications, 1989, 42(1): 313–345.
- [14]孟恩,刘福来,刘平华,等.辽东半岛东北部宽甸地区南辽河群沉 积时限的确定及其构造意义[J]. 岩石学报,2013,29(7):2465-2480.
- [15]陈斌,李壮,王家林,等.辽东半岛~2.2Ga岩浆事件及其地质意
 义[]].吉林大学学报(地球科学版),2016,46(2):303-320.
- [16]刘福来,刘平华,王舫,等.胶-辽-吉古元古代造山/活动带巨 量变沉积岩系的研究进展[J].岩石学报,2015,31(10):2816-2846.
- [17]李壮,陈斌,刘经纬,等.辽东半岛南辽河群锆石 U-Pb 年代学及 其地质意义[J].岩石学报,2015,31(6):1589-1605.
- [18]王舫,刘福来,刘平华,等.南辽河群盖县组的重新厘定:来自辽 南地区黄花甸-苏子沟-带变质砂岩碎屑锆石U-Pb年代学证 据[]].岩石学报,2018,34(4):1219-1228,1248-1253.
- [19] 聂飞, 董国臣, 莫宣学, 等. 滇西昌宁 孟连带三叠纪花岗岩地球 化学、年代学及其意义[J]. 岩石学报, 2012, 28(5): 1465-1476.

- [20]Whalen J B, Currie K L, Chappell B W. A- type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions Mineralogy Petrology, 1987, 95:407–419.
- [21]Chappell B, White A J R. I- and S- type granites in the Lachlan Fold Belt[J].Transactious of the Royal Society of Edinburgh.Earth Sciences, 1992, 83: 1–26.
- [22]Cornell D H, Schutte S S, Eglington R L. The Ongeluk Basaltic Andesite Formation in Grigualanel West South Africa Submarine Alteration in a 2222Ma Proterozoic Sea[J].Precambrain Research, 1996,79(1/2):102–123.
- [23]McKenzie D. Some Remarks on the Movement of Small Melt Fractions in the Mantle[J].Earth and Planetary Science Letters, 1989,95(1):53-72.
- [24]Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):241-265.
- [25]Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J].Chemical Geology, 2000, 165:197–213.
- [26]张秋生,杨振升,刘连登.辽东半岛早期地壳与矿床[M].北京:地 质出版社,1988:218-450.
- [27]李三忠,郝德峰,赵国春,等.丹东花岗岩的地球化学特征及其成因用.岩石学报,2004,(6):116-122.
- [28]Li S Z, Zhao G C, Sun M, et al. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern block of the North China Craton[J].Journal of Asian Earth Sciences, 2005, 24 (5):659–674.
- [29]Li S Z, Zhao G C, Sun M, et al. Are the South and North Liaohe Groups of North China Craton different exotic terranes- Nd isotope constraints[J].Gondwana Research, 2006, 9(1):198–208.
- [30]Li S Z, Zhao G C. SHRIMP U–Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao–Liao–Ji belt in the Eastern Block of the North China Craton[J].Precambrian Research, 2007, 158(1):1–16.
- [31]Luo Y, Sun M, Zhao G C, et al. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt[J]. Precambrian Research, 2004, 134(3/4): 349-371.
- [32]Luo Y, Sun M, Zhao G C, et al. A comparison of U–Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: Constraints on the evolution of the Jiao–Liao–Ji Belt, North China Craton[J].Precambrian Research, 2008, 163 (3/ 4):279–306.

- [33] 白瑾. 中国前寒武纪地壳演化[M]. 北京: 地质出版社, 1993: 47-89.
- [34]Faure M, Lin W, Monié P, et al. Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula, NE China[J].Terra Nova, 2004,16(2):75-80.
- [35]Lu X P, Wu F Y, Guo J H, et al. Zircon U–Pb geochronological constraints on the Paleoproterozoic crustal evolution of the Eastern block in the North China Craton[J].Precambrian Research, 2006, 146(3/4):138–164.
- [36]王惠初,陆松年,初航,等.辽阳河栏地区辽河群中变质基性熔岩的锆石U-Pb年龄与形成构造背景[J].吉林大学学报(地球科学版),2011,41(5):1322-1334,1361.
- [37]Meng E, Liu F L, Liu P H, et al. Petrogenesis and tectonic significance of Paleoproterozoic meta- mafic rocks from central Liaodong Peninsula, Northeast China: Evidence from zircon U-Pb dating and in situ Lu-Hf isotopes, and whole-rock geochemistry[J]. Precambrian Research, 2014, 247:92–109.
- [38]Li Z, Chen B. Geochronology and geochemistry of the Paleoproterozoic meta-basalts from the Jiao-Liao-Ji Belt, North China Craton:Implications for petrogenesis and tectonic setting[J]. Precambrian Research, 2014, 255:653-667.
- [39]贺高品,叶慧文.辽东一吉南地区早元古代变质地体的组成及主要特征[J].长春科技大学学报,1998,(2):2-7,15.
- [40]贺高品,叶慧文.辽东一吉南地区早元古代两种类型变质作用及 其构造意义[J].岩石学报,1998,(2):25-35.
- [41]Zhao G C, Cawood P A, Li S Z, et al. Amalgamation of the North China Craton: Key issues and discussion[J]. Precambrian Research, 2012,222–223:55–76.
- [42]Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology, 1984, 25:956–983.
- [43]郝德峰,李三忠,赵国春,等.辽吉地区古元古代花岗岩成因及对 构造演化的制约[J].岩石学报,2004,(6):108-115.
- [44]孙敏,张立飞,吴家弘.早元古代宽甸杂岩的成因:地球化学证据[J].地质学报,1996,(3):207-222.
- [45] 葛肖虹, 刘俊来, 任收麦, 等. 中国东部中一新生代大陆构造的形成与演化[J]. 中国地质, 2014, 41(1): 19-38.
- [46]毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的 期次及其地球动力学背景[J].岩石学报,2005,(1):171-190.
- [47]杨宽,王建平,林进展,等.胶东半岛艾山岩体岩石地球化学特征 及成因意义[J].地质与勘探,2012,48(4):693-703.