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Assessment  of  prediction  performances  of  stochastic  models:  Monthly
groundwater level prediction in Southern Italy
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Abstract: Stochastic  modelling  of  hydrological  time  series  with  insufficient  length  and  data  gaps  is  a
serious  challenge  since  these  problems  significantly  affect  the  reliability  of  statistical  models  predicting
and  forecasting  skills.  In  this  paper,  we  proposed  a  method  for  searching  the  seasonal  autoregressive
integrated moving average (SARIMA) model parameters to predict the behavior of groundwater time series
affected by the issues mentioned. Based on the analysis of statistical indices, 8 stations among 44 available
within  the  Campania  region  (Italy)  have  been  selected  as  the  highest  quality  measurements.  Different
SARIMA models, with different autoregressive, moving average and differentiation orders had been used.
By reviewing the criteria used to determine the consistency and goodness-of-fit of the model, it is revealed
that  the  model  with  specific  combination  of  parameters,  SARIMA (0,1,3)  (0,1,2) 12,  has  a  high  R2 value,
larger than 92%, for each of the 8 selected stations. The same model has also good performances for what
concern the forecasting skills, with an average NSE of about 96%. Therefore, this study has the potential to
provide  a  new  horizon  for  the  simulation  and  reconstruction  of  groundwater  time  series  within  the
investigated area.
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Introduction

Groundwater evaluation has a profound impact on
the management of water supplies, as groundwater
is  a  major  source  of  drinking  water  as  well  as
irrigation  water  (Semiromi  and  Koch,  2019).  The
historical  time  series  of  groundwater  level  are  the
necessary  tools  for  the  study  of  groundwater
drought  features,  to  establish  a  relationship  with
the meteorological input and to potentially quantify
the  impact  of  climate  conditions  on  the
groundwater level by Longobardi and Van (2018).
Depending on the temporal extension, lengths and
frequency  of  data  gaps  of  the  time  series,
availability  of  neighbouring  data  at  the  regional
scale  and  the  characteristics  of  the  study  area,

different  techniques  can  be  used  to  analyze
groundwater  levels.  These  techniques  vary  from
numerical  to  mathematical,  conceptual,  and
physical  models,  relying  on  the  information  used
to  explain  the  dynamic  behaviour  of  aquifers  and
associated  hydrological  and  hydrogeological
variables.  The  Autoregressive  Integrated  Moving
Average  (ARIMA)  family  of  models  have  been
extensively used for the analysis of a wide range of
water related issues (Longobardi and Villani, 2006;
Faruk,  2010; Boulariah  et  al.  2019)  including  the
groundwater  level  modelling  (Ahn  and  Salas,
1997; Mirzavand  and  Ghazavi,  2014; Oikonomou
et  al.  2018).  The  complexity  and  heterogeneity  of
aquifer  behaviour  and  parameters  along  with  the
poor  input  data  requirements,  makes  the  flexible
statistical  modelling  a  very  attractive  tool  for  the
purpose (Suryanarayana et al. 2014; Oikonomou et
al.  2018).  Considering  the  detrending  and  the
seasonality,  the  Box-Jenkins  model  is  the  most
common  approach  to  forecasting  time  series
(Young,  1999; Adamowski,  2008).  It  has  high
accuracy  in  short-term  forecasts  (Takafuji  et  al.
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2019)  and  allows  forecasting  in  the  conditions  of
data  shortage  (Boulariah  et  al.  2019).  In  Kashan
plain,  Isfahan  province  of  Iran, Mirzavand  et  al.
(2015) used time series models and proved that the
autoregressive  moving  average  (ARMA)  model
can  predict  groundwater  level  change  with  high
accuracy.  In  order  to  simulate  the  groundwater
level  in  a  coastal  aquifer, Yang  et  al.  (2017)
explored three time series analysis approaches, i.e.,
Holt-Winters  (HW),  integrated  time  series  (ITS)
and  seasonal  autoregressive  integrated  moving
average (SARIMA), showing that all three models
can reliably predict the water table, but the SARIMA
model  showed  highest  reliability  compared  to  the
other two. Takafuji et al. (2019) compared geosta-
tistical simulation (SGS) and the ARIMA model to
forecast  the  depth  of  groundwater  table  in  the
Bauru  Aquifer  System  (BAS),  the  results  showed
that  the  ARIMA  model  has  better  performance
than the geostatistical  model with higher accuracy
and precision. In Italy, Nunno and Granata (2020)
used  the  NARX  neural  network  to  predict
groundwater level in Apulia region. They reported
that very good results were obtained for the region
of Apulia and suggested to use the NARX network
in  other  areas  characterized  by  Mediterranean
climate  and  karst  phenomena  for  groundwater
prediction.

In  this  direction,  the  current  paper  aims  to
address  the  problem  of  predicting  and  forecasting
groundwater table fluctuations in a specific area of
the Mediterranean region, the Campania region, in
southern  Italy,  characterized  by  temporally
discontinuous  observed  time  series,  by  using  a
statistical approach based on SARIMA tools. 

1  Methodology
 

1.1 Time series homogeneity tests

Different  statistical  tests  were  used  for  homo-
geneity  and  trend  analysis  on  time  series  data.
Pettit’s test and the student’s test have been used in
this study. 

1.1.1    Pettitt’s Test
In  some  cases,  where  the  exact  time  of  displace-
ment  is  unknown,  the  use  of  the  Pettitt’ s  test
allows  us  to  determine  the  moment  of  change  in
the time series. So, the Pettit’s test is based on the
following rules:

X1,X2,X3, · · ·Xn

X1,X2,X3, · · ·Xt

F1 (X)

If  is  a  series  of  observable  data
that has a change point t, then  has a
distribution function , which differs from the
distribution  function  of  the  second  part  of  the

Xt+1,Xt+2,Xt+3, · · ·XH

Ut

series .  Nonparametric  test
statistics  can be written as follows:

Ut =

t∑
i=1

n∑
j=t+1

sign(xt − x j) (1)

sign(xt − x j) =

 1, i f (xt − x j) > 0
0, i f (xt − x j) = 0
−1, i f (xt − x j) < 0

Where: 

ρ

Test statistics K and  the  corresponding
confidence  level  for  the  sample  (n)  can  be
described as:

K = Max |Ut| (2)

ρ

When a certain value is more than the confidence
level 

ρ = exp
( −K
n2+n3

)
(3)

The  null  hypothesis  will  be  rejected.  For  the
change  point,  the  approximate  probability  of
significance р is determined as follows:

p = 1−ρ (4)

Thus,  in  the  place  where  the  change  point  is
located, the series is divided into two parts (Jaiswal
et al. 2015). 

1.1.2    Student’s Test
The  t-test  refers  to  a  parametric  test  in  which  the
difference  between  the  theoretical  value  and  the
average  value  is  indicated  by  an  alternative
hypothesis, while the null hypothesis indicates that
these  values  are  equal  to  each other.  This  test  has
more statistical power than the nonparametric tests.
t criterion is calculated by the formula (Cleophas et
al. 2016):

t =
x̄−µ
s/
√

n
(5)

µ x̄Where:  is the specified value;  is the mean of
the  samples; s is  the  standard  deviation  of  the
samples; n is the size of the samples.

These methods of testing the hypothesis on data
homogeneity are selected on the basis of accuracy
as  well  as  the  simplicity  of  utilization  of  results.
Data analysis was performed by using the statistical
software R studio. 

1.1.3    Time Series prediction and forecasting models
The  fundamental  steps  in  forecasting  and  time
series  modeling,  as  described  by  (Valipour  et  al.
2012), are to plot the time series and determine its
basic  characteristics.  Regarding  various  features
such  as  trend  and  seasonality,  it  is  important  to
look  for  potential  signs  that  the  time  series  has
changed over the investigation period.  Next,  trend
or  seasonality  should  be  eliminated  by
differentiating  or  by  fitting  model.  The  main  goal
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of  this  process  is  to  produce  a  set  of  stationary
residuals  (Valipour  et  al.  2013).  As  a  final  step,  a
forecasting  model  for  the  residuals  should  be
developed.  Occasionally,  several  potential  models
can  be  found,  and  in  this  case,  an  additional
analysis  must  be  performed  to  determine  the  best
model for deployment.

Sometimes,  potential  models  can  be  eliminated
based on how well they fit over historical data. It is
possible that a poorly adapted model may produce
good  forecasts. Montgomery  et  al.  (2015) has
shown  that  it  is  necessary  to  validate  the  perfor-
mance of a model from the previous step. This will
likely involve some type of split sampling or cross-
validation  procedure.  The  objective  of  this  step  is
to select a suitable forecast model.

In  addition,  it  is  interesting  to  know  the
differences  between  the  original  data  and  the
forecasted values by the original scale model. The
methodology for determining the optimal seasonal
ARIMA model consists of six consecutive steps as
described  above. Fig.  1 demonstrates  the  step-by-
step  process  to  forecast  time  series  from  data
analysis  to  the  estimation  of  the  corresponding
model.
  

Analysis data

Yes No
Is the data

homogeneous?

Use AR, MA,

ARMA models

Use ARIMA models

avoid d>1

Select the most

common models with least

AIC, BIC

Apply the parameters of

the selected models to

estimate the data for

each station

To compare the evaluation

criteria of the models

Choose the most

suitable model
 

Fig. 1 Flowchart  of  applied  methodology  for
forecasting time series
 

The  use  of  ARMA  models  has  proven  itself  in
the  forecasting  and  analysis  of  hydrological  time
series,  which  is  confirmed  by Cleophas  and
Zwinderman  (2016), Balasmeh  et  al.  (2019) and

Mombeni  et  al.  (2013).  As  mentioned  above,  the
ARMA  model  is  a  combination  of  the  autore-
gressive  (AR)  model  and  the  moving  average
(MA) model (Kumar and Rathnam, 2019). AR part
indicates  that  the  variable  of  interest  regresses
according  to  its  previous  values.  MA  part  shows
that  a  linear  combination  of  a  limited  number  of
residuals  is  a  regression error.  In  other  words,  the
deviation of a dependent variable from its average
value  is  a  linear  combination  of  current  and  past
values of the random perturbation vector. Thus, the
ARMA  model  allows  one  to  make  a  forecast  that
depends  on  both  the  current  and  past  values  of
variable  as  well  as  the  magnitude  of  normal
disturbances  of  the  current  and  past  values.  The
stationarity  of  data  usage  is  an  essential  criterion
for the use of such models.

The chosen model is based on manually selected
parameters that depends on the values of ACF and
PACF  graphs,  which  minimizes  the  Akaike  and
Swartz  criteria,  and  is  also  based  on  essential
coefficients. The model will not be accepted if the
resulting  model  does  not  meet  certain  mathe-
matical  conditions  (Valipour  et  al.  2013a).  The
forecasted  values  have  a  predictive  interval  that
increases  as  the  forecast  horizon  increases.  The
forecast intervals are based on the theory that there
is  no  autocorrelation  of  the  residues  and  their
normal distribution. If one of the conditions is not
satisfied, the forecast may turn out to be incorrect.
Therefore, A graph and residual histogram are built
before  the  forecast,  and  together  with  the  Lung-
Box  test,  a  visual  analysis  that  allows  us  to  draw
conclusions whether the model fits or not.

The  Lung-Box  test  allows  us  to  check  the
hypothesis  that  the  autocorrelation  coefficient
differs  from  zero.  The  null  hypothesis  of  the  test
indicates that the remnants of the model are white
noise.  An  alternative  hypothesis  suggests  that  the
data is not random. The formula for calculating Q-
statistics is as follows :

Q∗ = T (T +2)
m∑

k=1

r2
k

T − k
(6)

rk

Where: T is the sample size; m is the maximum
lag  length;  is  the  sample  autocorrelation
coefficient for lag k;

The critical value is given as follows:

X2
κp = X2

1−α,m (7)

X2
1−α,m

Q∗ > X2
κp

Q∗ < X2
κp

Where:  is quantile of chi-square distribution
with  m  degrees  of  freedom.  If ,  the  null
hypothesis  will  be  rejected;  if ,  the  null
hypothesis  will  be  accepted  at  a  given  level  of
significance.
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The  Lung-Box  test  is  based  on  the  Box-Pierce
statistics.  Therefore,  it  has  the  same  asymptotic
distribution and gives comparatively similar results
for relatively large numbers. The criterion does not
lose  its  consistency  even  if  the  process  does  not
have  a  normal  distribution.  When  the  data  under
study is non-stationary, the box-Jenkins models are
used.  To  reduce  the  data  to  a  stationary  form,  a
method  of  taking  consecutive  differences  is  used.
If  the  series  becomes  stationary  after  these
transformations, we can use the ARIMA model to
forecast.  In  this  case,  the  initial  step  of
differentiation can be applied one or several times
to  eliminate  the  unsteadiness  (Valipour  et  al.
2013b).  There  are  four  consecutive  stages  to
determine the Box- Jenkins model:

(1) Model identification-the process of selecting
a model that is best suited to the process in question.

(2)  Model  assessment-the  use  of  regression
methods  to  obtain  the  parameters  included  in  the
model.

(3) Model test-check the adequacy of the model
using  tests  for  normality  and  autocorrelation  of
residues.

(4)  Model  application-use  of  the  model  focus
forecasting.  (The  design  of  the  technique  is
presented in Fig. 2).
  

Define the observation for the analysis and

study the available information

Select the methodology of application

(Presumably, Box-Jenkens)

Identification Select a specification

Preliminary ARIMA(p, d, q)

Estimation

NO

Diagnostic

Is the model valid for the prediction?

ACF, PACF

YES

Apply the model
 

Fig. 2 ARIMA model prediction method (Chatfield et
al.1973)
 

In  the  case  where  the  data  contain  a  seasonal
component,  the  SARIMA  model  is  used  for

forecasting. The difference between SARIMA and
ARIMA model is to add three parameters (P, D, Q)
to  predict  data  seasonality.  The  equation  of  the
ARIMA/SARIMA  model  in  general  looks  like
this:

∅p (Bs)φP (B) (1−B)d(1−Bs)DZt =

θq (B)ϑQ (Bs)et (8)

∅p (Bs) = 1−∅1Bs−∅2B2s− · · ·−∅p (Bps) (9)

AR (p)−φp (B) = 1−φ1B−φ2B2− · · ·−φPBP (10)

MA
(
q
)− θq (B) = 1− θ1B− θ2B2− · · ·− θqBq (11)

Where:  AR(p)  is  the  operator  that  converges  to
provide  the  operator  (MA)  with  stationary
conditions, which is a polynomial of the order q in
B, such that each value is the sum of the previous
white noise values of q+1.

MA  (q)  is  the  operator  which  converges  to
ensure the reversibility

ϑQ (Bs) = 1−ϑ1Bs− θ2B2s− · · ·−ϑQBQs (12)
 

1.1.4    Goodness of fit
In  order  to  analyze  the  performance  of  these
models,  various  efficiency  indices,  such  as  Nash-
Sutcliffe  Efficiency  (NSE)  (Nash  and  Sutcliffe,
1970),  R2 determination  coefficient,  root  mean
square  error  (RMSE)  (Singh  et  al.  2005),  Mean
Absolute  Error  (MAE)  (Willmott  et  al.  2005),
Index  of  Agreement  (Willmott,  1981),  Mean
Squared  Derivative  Error  (Willmott  et  al.  2005)
and  the  percent  bias  (%)  (Singh  et  al.  2005).  In
addition,  Akaike  Information  Criterion  (AIC)  and
Bayesian Information Criterion (BIC) were used to
evaluate  the  maximum  likelihood  of  models.
Moriasi et al. (2007) suggested a rating method for
this  purpose  to  classify  models  into  four  types:
very good, good, satisfactory and unsatisfactory. 

2  Study area and datasets
 

The  Campania  region  in  southern  Italy  is  situated
between  40.0°-41.5°  N  and  13.5°-16.0°  E,
extending  from  the  Apennine  Mountains  to  the
Mediterranean  Sea  with  steadily  decreasing
elevations  from  the  interior  to  the  coastline,
covering  approximately 14 000 km2 (Fig.  3,  right
panel).  The  climate  of  study  area  is  usually
seasonal, with some apparent variations depending
on  the  region.  With  the  greater  amount  of
precipitation  observed  during  the  winter  months,
the  seasonality  is  very  marked.  The  mean  annual
rainfall  ranges  from  600  mm  to 2 400 mm  in  the
study region (Fig. 3, left panel), while the average
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annual temperature is about 17 °C.
Available  data  consist  of  monthly  groundwater

level time series for over 44 sites located across the
Campania  region  and  the  Lazio  region,  the  data
were  reviewed  and  analyzed  in  this  paper  from
1926  to  1994.  The  water  wells  database  was
provided  by  the  national  hydrographic  and
mareograph  service  SIMN.  After  a  data  quality
control  performed  using  different  statistical  tests,
only 8 out of these stations were effectively used in
the area under investigation. 

3  Results and discussion
 

To determine the parameters of the model, the auto
ARIMA function  of  the  R  software  was  used,  the
function  allows  us  to  automatically  select  the
model  with  the  lowest  AIC,  BIC  indices,  which
significantly  reduces  the  time  for  the  selection  of
parameters  and model  order.  When evaluating  the
observed values, a restriction in the enumeration of
parameters  was  used.  Models  with  a  step  of
differentiation  (d>1,  D>1)  were  excluded.  This
restriction  is  based  on  studies  conducted  by
Hamilton  (1994) and Mohammadi  et  al.  (2005),
which  recommended  that  the  differentiation  order
for  time  series  should  not  be  more  than  1,
otherwise  the  results  will  be  far  from reality.  The
following is an example of estimating the observed
values  for  data  from  a  measuring  station  in

Casamicciola.  We  applied  the  SARIMA  model
(1,1,2)  (0,1,1)12,  with  the  lowest  AIC  and  BIC
(AIC  =  −1 226.74 and  BIC  =  −1 207.5).  A  com-
parison  of  the  predicted  and  observed  values  is
presented in Fig. 4.

As  it  can  be  seen  from the  picture  (Fig.  4),  the
data  have an increasing trend,  which is  confirmed
by the tests for stationarity. According to the Pettitt
test,  the  series  is  heterogeneous  and  a  shift  is
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Fig. 3 Digital  elevation  model  with  location  of  water  wells  (right  panel)  and  mean  annual  precipitation  (left
panel) in the study area
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observed in August 1946. The model describes the
data  well  enough,  which  is  confirmed  by  the
efficiency  indices  between  the  estimated  and
observed values. A high correlation value between
graphs  indicates  that  the  prediction  is  highly
accurate.  The adequacy of  the  model  was  verified
using the residual analysis shown in Fig. 5.

Residuals  look  like  white  noise  and  corres-
pond to a normal distribution and the values of the
autocorrelation  lags  are  within  the  confidence
interval, which indicates the absence of autocorre-
lation  in  the  residues.  The  histogram  of  residuals
shows  symmetric  distribution  relative  to  zero,
which  indicates  the  absence  of  systematic  errors.
Those results suggest that this model is well suited
for evaluating the data in question and can be used
for  prediction  and  forecasting.  In  a  similar  way,
models were found for predicting all 8 stations, the
results are presented in Table 1.

The analysis of the resulting models allowed us
to  determine  the  three  most  frequent  forecasting

models,  which  are  ARIMA  (0,1,3)  (0,1,2)12,
ARIMA (1,1,2) (0,1,1)12,  ARIMA (1,1,1) (0,1,1)12.
The  three  recurring  models  were  applied  for  each
of  the  stations.  The  model  parameters  were
calibrated using various statistical indices of model
quality, such as (NSE) (Nash and Sutcliffe, 1970),
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Fig. 5 Autocorrelation function graph for the residues of the SARIMA model (1,1,2) (0,1,1)12

 
Table 1 Forecasting  models  Results  based  on  AIC
and BIC criteria

Name of station
Parameters of

model
AIC BIC

Acera Capomazzo (1,1,2)(0,1,2)12 514.44 542.39
Casamicciola (1,1,2)(0,1,1)12 −1 228.75 −1 209.5

Cassano di Sessa
Aurunca (0,1,3)(0,1,2)12 914.41 942.54

Forio(Calitto) (1,1,2)(0,1,1)12 607.55 630.75
Forio(Pontone) (0,1,3)(0,1,2)12 −571.39 −547.92

Forio(Umberto I) (1,1,1)(0,1,1)12 −39.8 −24.01
Nocelleto di Carinola (1,1,1)(0,1,1)12 −377.44 −309.26

Parete(tre ponti) (1,1,2)(0,1,1)12 −702.58 −682.21
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correlation  coefficient  R2,  root  mean  square  error
(RMSE)  (Singh  et  al.  2005)  and  percentage  bias
(%),  etc.  The  goodness-of-fit  assessment  of  the
models was carried out on the basis of 11 statistical
criteria presented below (Table 2).

The  analysis  of Table  2 shows  high  values  of
Pearson correlation for each model and the average
value  is  0.94.  Such  a  high  correlation  shows  that

each of the models describes the data well enough
to ensure high accuracy of prediction.

However, the SARIMA model (0,1,3) (0,1,2)12 is
the  best  for  predicting  the  groundwater  level  for
each of the 8 stations in the Campania region, since
it has the highest correlation between the observed
and  forecasted  values  and  the  lowest  errors  than
two  other  models.  Using  this  model  to  forecast

Table 2 The comparison of different SARIMA models based on accuracy measures

Parete
(tre ponti)

Nocelleto di
carinola

Forio
(Umberto I)

Forio
(Pontone)

Forio
(Calitto)

Cassano di
Sessa

Aurunca

Casamicci
ola

Accera
Copmazzo

SARIMA (0,1,3)(0,1,2)12
NSE 0.944 0.996 0.920 0.949 0.985 0.999 0.932 0.984
MAE 0.065 0.110 0.131 0.067 0.217 0.255 0.026 0.214
RMSE 0.107 0.183 0.218 0.108 0.363 0.420 0.037 0.331

Pearson cоr. 0.971 0.935 0.960 0.974 0.962 0.930 0.965 0.983
MSE 0.011 0.032 0.047 0.011 0.121 0.176 0,001 0.109
d 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

BIAS$ −0.026 0.027 −0.006 −0.012 −0.046 −0.045 0.036 0.003
MSDE 4.7E-04 4.3E-06 1.5E-05 3.1E-09 0.006 0.101 2.2E-06 0.016

R2 0.944 0.874 0.922 0.949 0.925 7 0.865 0.932 0.967
AIC −678.64 −321.22 −36.87 −571.61 625.55 914.41 −1 203.63 532.08
BIC −654.2 −294.18 −13.18 −547.92 652.85 941.39 −1 180.55 559.97

SARIMA (1,1,2)(0,1,1)12
NSE 0.943 0.996 0.920 0.947 0.689 0.999 0.930 0.984
MAE 0.064 0.109 0.129 0.068 0.529 0.255 0.026 0.211
RMSE 0.108 0.182 0.218 0.110 1 625 774 0.422 0.037 0.329

Pearson cor. 0.971 0.934 0.960 0.973 0.553 0.929 0.964 0.983
MSE 0.012 0.032 0.047 0.012 0.419 0.178 0.001 0.107
d 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

BIAS$ −0.018 0.032 −0.008 8 −0.013 −2.340 −0.046 −0.117 0.057
MSDE 0.000 1 2.6E-06 1.3E-05 3.1E-09 0.198 0.106 2.2E-06 0017

R2 0.943 0.873 0.921 0.948 0.306 0.863 0.931 0.967
AIC −702.58 −327.03 −37.95 −562.72 607.55 920.63 −1 226.74 519.45
BIC −682.21 −304.5 −18.2 −542.97 630.3 943.12 −1 207.5 542.69

SARIMA (1,1,2)(0,1,1)12
NSE 0.943 0.996 0.920 0.946 0.985 0.999 0.940 0.984
MAE 0.063 0.110 0.129 0.069 0.219 0.257 0.024 0.212
RMSE 0.108 0.183 0.218 0.111 0.365 0.424 0.034 0.330

Pearson cor. 0.971 0.934 0.960 0.973 0.962 0.928 0.970 0.983
MSE 0,011 0.032 0.047 0.012 0.122 0.180 0.001 0.107
d 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

BIAS$ −0.018 0.033 −0.008 −0.013 −0.042 −0.047 0.048 0.061
MSDE 0,0001 2.4E-06 1.3E-05 3.1E-09 0.005 0.109 2.2E-06 0017

R2 0.943 0.873 0.921 0.947 0.862 0.862 0.941 0.967
AIC −672.01 −327.44 −39.8 −561.6 629.36 924.5 −1 194.32 518.6
BIC −655.71 −309.41 −24 −545.8 647.56 942.491 −1 178.931 537.19
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groundwater  level  behavior  for  24  months,
the obtained  results  are shown  in Fig.  6,  where
blue  and  gray  colors  highlight  the  80% and  95%
confidence intervals respectively.

As shown in Fig. 6, this model is very suitable for
predicting  time  series  in  each  region;  data  is  well

predicted despite the presence of trend and season-
ality. For clarity, and according to classification by
Moriasi et al.  (2007), Table 3 shows the values of
some  statistical  criteria  and  their  average  values
when using the SARIMA model (0,1,3) (0,1,2)12.

The average value of the indices for the selected
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Fig. 6 Forecasting using SARIMA(0,1,3)(0,1,2)12; (a) Acera Capomazzo, (b) Casamicciola, (c) Cassano di Sessa
Aurunca,  (d)  Forio(Calitto),  (e)  Forio(Pontone),  (f)  Forio(Umberto  I),  (g)  Nocelleto  di  Carinola,  (h)  Parete(tre
ponti) scrivi cosa sono le fasce colorate

Table 3 Statistical index values for the selected SARIMA model (0,1,3) (0,1,2)12

NSE BIAS% R2 d r
Accera Copmazzo 0.98 0.003 0.96 0.99 0.98
Casamicciola 0.93 0.03 0.93 0.99 0.96

Cassano di Sessa Aurunca 0.99 −0.04 0.86 0.99 0.93
Forio Calitto 0.98 −0.04 0.92 0.99 0.96
Forio Pontone 0.94 −0.012 0.94 0.99 0.97
Forio Umberto I 0.92 −0.006 0.92 0.99 0.96

Nocelleto di carinola 0.99 0.02 0.87 0.99 0.93
Parete tre ponti 0.94 −0.02 0.94 0.99 0.97

Model Quality (Very good) 0.75< NSE<1.00 PBIAS<±10 0.75 < R2≤ 1.0 1 r > 0.7
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model  shows  that  this  model  describes  the  data
accurately and allows us to predict and forecast the
selected  time  series  with  high  accuracy  and
precision. 

4  Conclusions

Ground  water  level  forecasting  is  an  integral  tool
in the management, implementation, and operation
of  drinking  water  supply  systems.  The  use  of  the
Box-Jenkins  technique  is  a  reasonably  accurate
approach  for  groundwater  time  series  modeling.
The  results  show  that  SARIMA  models  predict
monthly  groundwater  levels  with  high  accuracy.
The  seasonal  autoregressive  integrated  moving
average models are sensitive to extreme values and
data  periodicity.  The  procedure  used  to  carry  out
the  work  simplifies  the  search  for  the  desired
combination  of  prediction  parameters.  In  fact,  the
most  suitable  parameters  for  predicting  the
groundwater  level  behavior  of  the  Campania
region  is  the  (0,1,3)  (0,1,2)12,  which  is  confirmed
by the analysis of statistical indices. The SARIMA
models  obtained  have  furthermore  a  sufficiently
high  forecasting  accuracy  although  there  is
basically  no  way  to  improve  them,  since  they
select a significant part of the information from the
data. The relevance of this model for predicting the
groundwater level in each of the 8 selected stations
proves  the  possibility  of  using  the  model  to
simulate the situation in the entire region using the
data of remaining stations.
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