Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 5
Article Contents

Yi DING, Ting ZHANG, Shu-ping DONG, Xian-de LIU, Han-dong LIANG. Study on the Vegetative Detritus Contribution to Beijing Urban PM2.5 Using Cellulose as a Marker[J]. Rock and Mineral Analysis, 2013, 32(5): 738-746.
Citation: Yi DING, Ting ZHANG, Shu-ping DONG, Xian-de LIU, Han-dong LIANG. Study on the Vegetative Detritus Contribution to Beijing Urban PM2.5 Using Cellulose as a Marker[J]. Rock and Mineral Analysis, 2013, 32(5): 738-746.

Study on the Vegetative Detritus Contribution to Beijing Urban PM2.5 Using Cellulose as a Marker

More Information
  • PM2.5 pollution raises environmental concern in China and other countries worldwide. The marker technique is regarded as a reliable tool for atmospheric aerosol source tracing. Cellulose can be used as a marker to identify and evaluate vegetative detritus emission to primary aerosols. An analytical method for cellulose in the PM2.5 has been modified because of its low content in PM2.5 and the relative high procedure blank. The method combines an enzymatic cellulose hydrolysis procedure and a GOD-phenol-4-aminoantipyrene determination of formed glucose. The key parameters of the method were optimized as a delignification condition, temperature for cellulose enzymatic hydrolysis, amount of enzyme, pH value and hydrolysis reaction time. The method meets the requirements of cellulose determination of PM2.5 with a detection limit of 0.26 μg/m3. A procedure blank of 36.5 μg glucose was obtained which is significantly lower than 53.8 μg for the previous method. Cellulose in 23 Beijing urban PM2.5 collected from May 15th to June 28th, 2012 were analyzed. The detection rate of cellulose is 96%. The results show that the cellulose concentration in Beijing PM2.5 is (0.573±0.17) μg/m3. The vegetative detritus contribution is 1.37%±0.65% of PM2.5 mass concentration, or 4.4% in average and 9.2% in the maximum of PM2.5 organic carbon, indicating vegetative detritus is a major contributor of urban aerosol organic carbon and has to be considered in source attribution studies. This method provides a new technique for urban atmospheric PM2.5 source identification.
  • 加载中
  • [1] 董凤鸣,莫运政,李国星,胥美美,潘小川.大气颗粒物(PM10/PM2.5)与人群循环系统疾病死亡关系的病例交叉研究[J].北京大学学报(医学版).网络出版地址: http://www.cnki.net/kcms/detail/11.4691.R.20130530.0849.001.html [2013-05-30].

    Google Scholar

    [2] 谭吉华,赵金平,段菁春,马永亮,贺克斌,杨复沫.广州秋季灰霾污染过程大气颗粒物有机酸的污染特征[J].环境科学, 2013, 34 (5): 1982-1987.

    Google Scholar

    [3] 唐傲寒,赵婧娴,韩文轩,刘学军.北京地区灰霾化学特性研究进展[J].中国农业大学学报,2013, 18(3):185-191.

    Google Scholar

    [4] He K, Yang F, Ma Y, Zhang Q, Yao X, Chan C K, Cadle S, Chan T, Mulawa P. The characteristics of PM2.5 in Beijing, China [J]. Atmospheric Environment, 2001, 35: 4959-4970. doi: 10.1016/S1352-2310(01)00301-6

    CrossRef Google Scholar

    [5] Zappoli S, Andracchio A, Fuzzi S, Facchini M C, Gelencser A, Kiss G, Krivacsy Z, Molnar A, Meszaros E, Hansson H C, Rosman K, Zebuhr Y. Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility [J].Atmospheric Environment,1999,33: 2733-2743. doi: 10.1016/S1352-2310(98)00362-8

    CrossRef Google Scholar

    [6] Matthias-Maser S, Jaenicke R. The size distribution of primary biological aerosol particles with radii >0.2 mm in an urban/rural influenced region [J]. Atmospheric Research, 1995, 39: 279-286. doi: 10.1016/0169-8095(95)00017-8

    CrossRef Google Scholar

    [7] Andreae M O.Biomass Burning: Its History, Use and Distribution and Its Impact on Environmental Quality and Global Climate [M]//Levine J S.Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications. Cambridge: MIT Press, 1991: 3-21.

    Google Scholar

    [8] Sicre M A, Marty J C, Saliot A.Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin [J].Atmospheric Environment, 1987, 21(10): 22-47.

    Google Scholar

    [9] 何凌燕,胡敏,黄晓锋,张远航.北京大气气溶胶PM2.5中的有机示踪化合物[J].环境科学学报,2005,25 (1): 23-29.

    Google Scholar

    [10] Pacini E.Anther and pollen ripening to pollen presentation [J].Plant Systematics and Evolution, 2000, 222: 19-43. doi: 10.1007/BF00984094

    CrossRef Google Scholar

    [11] Lewis D, Smith D.Sugar alcohols (polyols) in fungi and green plants. Ⅰ: Distribution, physiology and metabolism [J]. New Phytologist, 1967, 66: 143-184. doi: 10.1111/nph.1967.66.issue-2

    CrossRef Google Scholar

    [12] Claeys M, Graham B, Vas G. Formation of secondary organic aerosols through photooxidation of isoprene [J]. Science, 2004, 303: 1173-1176. doi: 10.1126/science.1092805

    CrossRef Google Scholar

    [13] Rogge W F, Hildemann L M, Mazurek M A, Cass G R, Simoneit B R T. Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of plants [J]. Environmental Science and Technology, 1993, 27: 2700-2711. doi: 10.1021/es00049a008

    CrossRef Google Scholar

    [14] Puxbaum H, Tenze-Kunit M. Size distribution and seasonal variation of atmospheric cellulose [J]. Atmospheric Environment, 2003, 37: 3693-3699. doi: 10.1016/S1352-2310(03)00451-5

    CrossRef Google Scholar

    [15] Sánchez-Ochoa A, Kasper-Giebl A, Puxbaum H, Gelencser A, Legrand M, Pio C.Concentration of atmospheric cellulose: A proxy for plant debris across a west-east transect over Europe[J].Journal of Geophysical Research,2007,112,D23S08. doi: 10.1029/2006jd008180.

    Google Scholar

    [16] Cerqueira M, Marques D, Caseiro A, Pio C. Experi-mental evidence for a significant contribution of cellulose to indoor aerosol mass concentration [J].Atmospheric Environment, 2010, 44: 867-871. doi: 10.1016/j.atmosenv.2009.11.043

    CrossRef Google Scholar

    [17] Kunit M, Puxbaum H. Enzymatic determination of the cellulose content of atmospheric aerosols [J]. Atmospheric Environment, 1996, 30: 1233-1236. doi: 10.1016/1352-2310(95)00429-7

    CrossRef Google Scholar

    [18] Butler G W, Bailey R W. Chemistry and Biochemistry of Herbage (Volume Ⅰ) [M]. New York: Academic Press, 1973.

    Google Scholar

    [19] 欧阳平凯,陈茺,陈育如.木质纤维素原料浓酸水解动力学研究[J].林产化学与工业, 1993, 13 (1): 77-82.

    Google Scholar

    [20] 王林风,程远超.硝酸乙醇法测定纤维素含量[J].化学研究, 2011, 22(4): 52-55.

    Google Scholar

    [21] Browning B L, Bublite I O. The isolation of holocell-ulose from wood [J].Tappi, 1953, 36(10): 452-458.

    Google Scholar

    [22] Caserio A. Chemical Composition of the European Aerosol [D].Portugal: University of Aveiro, 2008.

    Google Scholar

    [23] Zhang T, Claeys M, Cachier H, Dong S P, Wang W, Maenhaut W, Liu X D. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker [J]. Atmospheric Environment, 2008, 42: 7013-7021. doi: 10.1016/j.atmosenv.2008.04.050

    CrossRef Google Scholar

    [24] 胡敏.北京大气细粒子和超细粒子理化特征、来源及形成机制[M].北京:科学出版社, 2009.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(1130) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint