Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 5
Article Contents

Jun-dong HU, Wei LIU, Ya-ting SHEN, Guo-hui LU Guo-hui. Review on the Co-behavior of Nanoparticles and Heavy Metals in the Presence of Natural Organic Matter in the Natural Environment[J]. Rock and Mineral Analysis, 2013, 32(5): 669-680.
Citation: Jun-dong HU, Wei LIU, Ya-ting SHEN, Guo-hui LU Guo-hui. Review on the Co-behavior of Nanoparticles and Heavy Metals in the Presence of Natural Organic Matter in the Natural Environment[J]. Rock and Mineral Analysis, 2013, 32(5): 669-680.

Review on the Co-behavior of Nanoparticles and Heavy Metals in the Presence of Natural Organic Matter in the Natural Environment

  • Due to the wide presence of nanoparticles (NPs) and heavy metals (HMs) in the environment, especially in porous media like soil, their fate and transport behaviors and hence the environmental impacts will greatly depend on their speciation, the impacts of natural organic matter (NOM) and how they interact with each other. Most correlative studies select typical NPs, HMs and NOM as the model subjects and conduct a series of adsorption-desorption batch experiments and NPs-HMs co-transport experiments in porous media to systematically study the NPs-HMs co-behaviors. Both thermodynamic and kinetics models have been applied to describe the interfacial reaction and transport/retention data obtained from experiments. The parameters were well compared, simulated and interpreted in order to achieve a complete picture of the effects of NOM on the fate of NPs-HMs. To reveal the mechanisms of NPs surface adsorption and the metal ions immobilization by NPs between soil grains, a big series of characterization analysis methods can be employed, such as Transmission Electron Microscopy (TEM), X-ray Diffractomer (XRD), X-ray Photoelectron Spectrometer (XPS), Fourier Transform Infrared Spectrometry (FTIR) and X-ray Absorption Near Edge Structure Spectrometry/Extended X-ray Absorption Fine Structure Spectrometry(XANES/EXAFS). Some of these methods working together are believed as a very effective and efficient approach in modern study. Understanding how the NPs impact on the leachability and bioavailability of heavy metals in subsurface porous media is of fundamental importance to the accurate assessment of environmental and ecological impacts of NPs. The results also have great significance to well comprehend the mechanisms of nano soil remediation.
  • 加载中
  • [1] Farre M, Sanchis J, Barcelo D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment [J].Trac-Trends in Analytical Chemistry, 2011, 30(3): 517-527. doi: 10.1016/j.trac.2010.11.014

    CrossRef Google Scholar

    [2] Subcommitte on Nanoscale Science Engineering and Technology, National Scicence and Technology Council Committee on Technology. National Nanotechnology Initiative Strategic Plan [R].USA,2011.

    Google Scholar

    [3] Majewski P, Thierry B.Functionalized magnetite nanoparticles-Synthesis, properties, and bio-applications [J].Critical Reviews in Solid State and Materials Sciences, 2007, 32(3-4):203-215.

    Google Scholar

    [4] Wei X C, Viadero R C.Synthesis of magnetite nanoparticles with ferric iron recovered from acid mine drainage: Implications for environmental engineering [J].Colloids and Surfaces A—Physicochemical and Engineering Aspects, 2007, 294(1-3):280-286.

    Google Scholar

    [5] Zhang Q A, Thompson M S, Carmichael-Baranauskas A Y, Caba B L, Zalich M A, Lin Y N, Mefford O T, Davis R M, Riffle J S. Aqueous dispersions of magnetite nanoparticles complexed with copolyether dispersants: Experiments and theory [J].Langmuir, 2007, 23(13): 6927-6936. doi: 10.1021/la070116+

    CrossRef Google Scholar

    [6] Hu J H, Johnston K P, Williams R O. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs [J].Drug Development and Industrial Pharmacy, 2004, 30(3): 233-245. doi: 10.1081/DDC-120030422

    CrossRef Google Scholar

    [7] Mak S Y, Chen D H. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles [J].Dyes and Pigments, 2004, 61(1): 93-98. doi: 10.1016/j.dyepig.2003.10.008

    CrossRef Google Scholar

    [8] Li X Q, Cao J S, Zhang W X. Stoichiometry of Cr(Ⅵ) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS) [J].Industrial & Engineering Chemistry Research, 2008, 47(7): 2131-2139.

    Google Scholar

    [9] Hu J D, Zevi Y, Kou X M, Xiao J, Wang X J, Jin Y. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions [J].Science of the Total Environment, 2010, 408(16): 3477-3489. doi: 10.1016/j.scitotenv.2010.03.033

    CrossRef Google Scholar

    [10] De D, Mandal S, Bhattacharya J, Ram S, Roy S. Iron oxide nanoparticle-assisted arsenic removal from aqueous system [J].Journal of Environmental Science and Health Part A—Toxic/Hazardous Substances & Environmental Engineering, 2009, 44(2): 155-162.

    Google Scholar

    [11] Liu R Q, Zhao D Y. Reducing leachability and bioacce-ssibilty of lead in soils using a new class of stabilized iron phosphate nanoparticles [J].Water Research, 2007, 41(12): 2491-2502. doi: 10.1016/j.watres.2007.03.026

    CrossRef Google Scholar

    [12] Liang P, Qin Y C, Hu B, Li C X, Peng T Y, Jiang Z C. Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES [J].Fresenius Journal of Analytical Chemistry, 2000, 368(6): 638-640. doi: 10.1007/s002160000546

    CrossRef Google Scholar

    [13] Christian P, Von der Kammer F, Baalousha M, Hofmann T. Nanoparticles: Structure, properties, preparation and behaviour in environmental media [J].Ecotoxicology, 2008, 17(5): 326-343. doi: 10.1007/s10646-008-0213-1

    CrossRef Google Scholar

    [14] Hiemstra T, Antelo J, Rahnemaie R, van Riemsdijk W H. Nanoparticles in natural systems Ⅰ: The effective reactive surface area of the natural oxide fraction in field samples [J].Geochimica et Cosmochimica Acta, 2010, 74(1): 41-58. doi: 10.1016/j.gca.2009.10.018

    CrossRef Google Scholar

    [15] Gilbert B, Ono R K, Ching K A, Kim C S. The effects of nanoparticle aggregation processes on aggregate structure and metal uptake [J].Journal of Colloid and Interface Science, 2009, 339(2): 285-295. doi: 10.1016/j.jcis.2009.07.058

    CrossRef Google Scholar

    [16] Hiemstra T, Antelo J, van Rotterdam A M D, van Riemsdijk W H. Nanoparticles in natural systems Ⅱ: The natural oxide fraction at interaction with natural organic matter and phosphate [J].Geochimica et Cosmochimica Acta, 2010, 74(1): 59-69. doi: 10.1016/j.gca.2009.10.019

    CrossRef Google Scholar

    [17] Tombacz E. Colloidal properties of humic acids and spontaneous changes of their colloidal state under variable solution conditions [J].Soil Science,1999, 164(11): 814-824. doi: 10.1097/00010694-199911000-00005

    CrossRef Google Scholar

    [18] 胡俊栋.四氧化三铁纳米颗粒的稳定性及其在饱和多孔介质中的迁移持留行为[D].北京:北京大学,2010.

    Google Scholar

    [19] 王萌,陈世宝,李娜,马义兵.纳米材料在污染土壤修复及污水净化中应用前景探讨[J].中国生态农业学报, 2010, 18(4): 434-439.

    Google Scholar

    [20] Qiu H, Zhang S J, Pan B C, Zhang W M, Lü L. Effect of sulfate on Cu(Ⅱ) sorption to polymer-supported nano-iron oxides: Behavior and XPS study [J].Journal of Colloid and Interface Science,2012, 366(1): 37-43. doi: 10.1016/j.jcis.2011.09.070

    CrossRef Google Scholar

    [21] Sharma Y C, Srivastava V, Weng C H, Upadhyay S N. Removal of Cr(Ⅵ) from wasterwater by adsorption on iron nanoparticles [J].Canadian Journal of Chemical Engineering,2009, 87(6): 921-929. doi: 10.1002/cjce.v87:6

    CrossRef Google Scholar

    [22] Hu J, Chen G H, Lo I M C. Removal and recovery of Cr(Ⅵ) from wastewater by maghemite nanoparticles [J].Water Research,2005, 39(18): 4528-4536. doi: 10.1016/j.watres.2005.05.051

    CrossRef Google Scholar

    [23] Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching [J].Chemosphere,2011, 82(8): 1178-1184. doi: 10.1016/j.chemosphere.2010.11.075

    CrossRef Google Scholar

    [24] Carabante I, Grahn M, Holmgren A, Kumpiene J, Hedlund J.Adsorption of As(Ⅴ) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy [J].Colloids and Surfaces A—Physicochemical and Engineering Aspects,2009,346(1-3): 106-113.

    Google Scholar

    [25] Hu J, Chen G H, Lo I M C.Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms [J].Journal of Environmental Engineering,2006, 132(7): 709-715. doi: 10.1061/(ASCE)0733-9372(2006)132:7(709)

    CrossRef Google Scholar

    [26] Nishio K, Gokon N, Tsubouchi S, Ikeda M, Narimatsu H, Sakamoto S, Izumi Y, Abe M, Handa H. Direct detection of redox reactions of sulfur-containing compounds on ferrite nanoparticle (FP) surface [J].Chemistry Letters,2006, 35(8): 974-975. doi: 10.1246/cl.2006.974

    CrossRef Google Scholar

    [27] Lin K S, Chang N B, Chuang T D. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater [J].Science and Technology of Advanced Materials,2008,9(2):doi:10. 1088/1468-6996/9/2/025015.

    CrossRef Google Scholar

    [28] Zhou J G, Fang H T, Hu Y F, Sham T K, Wu C X, Liu M, Li F. Immobilization of RuO2 on carbon nanotube: An X-ray absorption near-edge structure study [J].Journal of Physical Chemistry C,2009, 113(24): 10747-10750. doi: 10.1021/jp902871b

    CrossRef Google Scholar

    [29] Olegario J T, Yee N, Miller M, Sczepaniak J, Manning B. Reduction of Se(Ⅵ) to Se(-Ⅱ) by zerovalent iron nanoparticle suspensions [J].Journal of Nanoparticle Research,2010, 12(6): 2057-2068. doi: 10.1007/s11051-009-9764-1

    CrossRef Google Scholar

    [30] Pelley A J, Tufenkji N. Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media [J].Journal of Colloid and Interface Science,2008, 321(1): 74-83. doi: 10.1016/j.jcis.2008.01.046

    CrossRef Google Scholar

    [31] Zhang M Y, Wang Y, Zhao D Y, Pan G. Immobi-lization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), magnetite (Fe3O4) particles [J].Chinese Science Bulletin,2010, 55(4-5): 365-372. doi: 10.1007/s11434-009-0703-4

    CrossRef Google Scholar

    [32] Manzoori J L, Amjadi M, Hallaj T. Preconcentration of trace cadmium and manganese using 1-(2-pyridylazo)-2-naphthol-modified TiO2 nanoparticles and their determination by flame atomic absorption spectrometry [J].International Journal of Environmental Analytical Chemistry,2009, 89(8-12): 749-758. doi: 10.1080/03067310902736955

    CrossRef Google Scholar

    [33] Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts J P. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate [J].Environmental Science & Technology,2010, 44(19): 7635-7640.

    Google Scholar

    [34] Xiong Z, He F, Zhao D Y, Barnett M O.Immobi-lization of mercury in sediment using stabilized iron sulfide nanoparticles [J].Water Research,2009, 43(20): 5171-5179. doi: 10.1016/j.watres.2009.08.018

    CrossRef Google Scholar

    [35] Jin Y, Chu Y J, Li Y S.Virus removal and transport in saturated and unsaturated sand columns [J].Journal of Contaminant Hydrology,2000, 43(2): 111-128. doi: 10.1016/S0169-7722(00)00084-X

    CrossRef Google Scholar

    [36] 方婧,周艳萍,温蓓.二氧化钛纳米颗粒对铜在土壤中运移的影响[J].土壤学报, 2011, 48(3): 549-556. doi: 10.11766/trxb200912220584

    CrossRef Google Scholar

    [37] Ghosh S, Jiang W, McClements J D, Xing B S.Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes [J].Langmuir,2011, 27(13): 8036-8043. doi: 10.1021/la200772e

    CrossRef Google Scholar

    [38] Pan B, Xing B S.Applications and implications of manufactured nanoparticles in soils: A review [J].European Journal of Soil Science,2012, 63(4): 437-456. doi: 10.1111/ejss.2012.63.issue-4

    CrossRef Google Scholar

    [39] Franchi A, O′Melia C R.Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media [J].Environmental Science & Technology,2003, 37(6): 1122-1129.

    Google Scholar

    [40] Uchimiya M, Lima I M, Klasson K T, Wartelle L H. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter [J].Chemosphere,2010, 80(8): 935-940. doi: 10.1016/j.chemosphere.2010.05.020

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(1749) PDF downloads(15) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint