Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 1
Article Contents

Yu-long LIU, Yan-gao HUANG, Fei LIU. Analysis of Total Petroleum Hydrocarbon Fractions in Soils by Gas Chromatography: Standardized Calibration and Quantitation Method[J]. Rock and Mineral Analysis, 2019, 38(1): 102-111. doi: 10.15898/j.cnki.11-2131/td.201709040139
Citation: Yu-long LIU, Yan-gao HUANG, Fei LIU. Analysis of Total Petroleum Hydrocarbon Fractions in Soils by Gas Chromatography: Standardized Calibration and Quantitation Method[J]. Rock and Mineral Analysis, 2019, 38(1): 102-111. doi: 10.15898/j.cnki.11-2131/td.201709040139

Analysis of Total Petroleum Hydrocarbon Fractions in Soils by Gas Chromatography: Standardized Calibration and Quantitation Method

  • BACKGROUNDInter-laboratory measurement results of total petroleum hydrocarbons (TPH) in soils determined by current Gas Chromatography-Flame Ionization Detector, are not comparable due to specified TPH ranges of alkanes and/or different calibration standards between laboratories. OBJECTIVESTo establish a standardized calibration and quantitation method of TPH and to develop the adjacent-peak calibration and quantitation method (APCQM). METHODSThe APCQM mainly includes:(1) defining TPH range as all compounds eluting between n-hexane and n-tetracontane; (2) division of TPHs into volatile petroleum hydrocarbons (VPH) and semivolatile petroleum hydrocarbons (SPH). Specify and calibrate procedure of TPH. Reference materials (RM) for VPH are 5 n-alkanes, from n-hexane to n-decane, whereas SPH RMs are 31 n-alkanes, from n-decane to n-tetracontane. Calibration equations of peak area and concentration of n-alkanes can be constructed by average response factor or linear regression methods; (3) quantitative concentrations of all target chromatographic peaks acquired by adjacent standard peak calibration; (4) calculation of the contents of n-alkanes, TPH and optional TPH fractions. RESULTSUsing the normal calibration and quantitation method, TPH recoveries of laboratory fortified blanks and laboratory fortified sample matrices could be underestimated or overestimated by 10%. By using the APCQM the paradox in quality control processes was resolved, and thus reliable measurement results of TPH were obtained in laboratories. CONCLUSIONSThe APCQM is applicable to standardization analysis of TPH fractions in environmental samples.
  • 加载中
  • [1] 张利飞, 刘昉, 任玥, 等.环保领域石油烃类标准体系存在的问题及建议[J].化学试剂, 2017, 39(12):1-10.

    Google Scholar

    Zhang L F, Liu F, Ren Y, et al.Current status and suggestions on environmental standards of petroleum hydrocarbons[J].Chemical Reagents, 2017, 39(12):1-10.

    Google Scholar

    [2] Guarino C, Spada V, Sciarrillo R.Assessment of three approaches of bioremediation (natural attenuation, landfarming and bioagumentation-assistited landfarming) for a petroleum hydrocarbons contaminated soil[J].Chemosphere, 2017, 170:10-16. doi: 10.1016/j.chemosphere.2016.11.165

    CrossRef Google Scholar

    [3] 杨慧娟, 刘五星, 骆永明, 等.气相色谱-质谱法分段测定土壤中的可提取总石油烃[J].土壤, 2014, 46(1):134-138.

    Google Scholar

    Yang H J, Liu W X, Luo Y M, et al.The sectional determination of extractable total petroleum hydrocarbons in soil by gas chromatography-mass spectrometry[J].Soils, 2014, 46(1):134-138.

    Google Scholar

    [4] 曹云者, 李发生.基于风险的石油烃污染土壤环境管理与标准值确立方法[J].农业环境科学学报, 2010, 29(7):1225-1231.

    Google Scholar

    Cao Y Z, Li F S.Risk-based environmental management of petroleum hydrocarbons contaminated soil and development of standards:A review[J].Journal of Agro-Environment Science, 2010, 29(7):1225-1231.

    Google Scholar

    [5] 李桂香, 高岩, 张青.环境样品中石油烃的分类/分段检测技术[J].实验室研究与探索, 2016, 35(4):30-33. doi: 10.3969/j.issn.1006-7167.2016.04.008

    CrossRef Google Scholar

    Li G X, Gao Y, Zhang Q.Testing technology of total petroleum hydrocarbon speciation/fractions in the environmental samples[J].Research and Exploration in Laboratory, 2016, 35(4):30-33. doi: 10.3969/j.issn.1006-7167.2016.04.008

    CrossRef Google Scholar

    [6] 张欢燕, 王臻, 周守毅.环境中总石油烃的气相色谱分析测定[J].环境监控与预警, 2013, 5(2):24-27. doi: 10.3969/j.issn.1674-6732.2013.02.006

    CrossRef Google Scholar

    Zhang H Y, Wang Z, Zhou S Y.TPH Determination in environmental matrix by GC-FID[J].Environmental Monitoring and Forewarning, 2013, 5(2):24-27. doi: 10.3969/j.issn.1674-6732.2013.02.006

    CrossRef Google Scholar

    [7] Coulon F, Wu G.Determination of Petroleum Hydrocar-bon Compounds from Soils and Sediments Using Ultrasonic Extraction[M]//McGenity T, Timmis K, Nogales B (eds).Hydrocarbon and Lipid Microbiology Protocols.Heidelberg: Springer, 2014: 31-46.

    Google Scholar

    [8] Brown D M, Okoro S, van Gils J, et al.Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in Niger Delta soils[J].Science of the Total Environment, 2017, 596-597:284-292. doi: 10.1016/j.scitotenv.2017.04.072

    CrossRef Google Scholar

    [9] Kwon M J, Hwang Y.Assessing the potential of organic solvents on total petroleum hydrocarbon extraction from diesel-contaminated soils[J].Water Air and Soil Pollution, 2017, 228:189. doi: 10.1007/s11270-017-3368-7

    CrossRef Google Scholar

    [10] Faustorilla M V, Chen Z L, Dharmarajan R, et al.Deter-mination of total petroleum hydrocarbons in Australian groundwater through the improvised gas chromatography-flame ionization detection technique[J].Journal of Chromatographic Science, 2017, 55(8):775-783. doi: 10.1093/chromsci/bmx038

    CrossRef Google Scholar

    [11] 李胜勇, 李先国, 邓伟, 等.超声萃取气相色谱法检测海洋沉积物中的总石油烃[J].海洋湖沼通报, 2013, 35(2):93-98.

    Google Scholar

    Li S Y, Li X G, Deng W, et al.Determination of total petroleum hydrocarbons in marine sediments using gas chromatography with FID detector after ultrasonic extraction[J].Transactions of Oceanology and Limnology, 2013, 35(2):93-98.

    Google Scholar

    [12] 周艳红, 李凌波.废水中萃取性石油烃的测定[J].石油炼制与化工, 2012, 43(5):88-92. doi: 10.3969/j.issn.1005-2399.2012.05.020

    CrossRef Google Scholar

    Zhou Y H, Li L B.Determination of extractable petroleum hydrocarbons in wastewater[J].Petroleum Processing and Petrochemicals, 2012, 43(5):88-92. doi: 10.3969/j.issn.1005-2399.2012.05.020

    CrossRef Google Scholar

    [13] 张劲强, 顾骏.利用Agilent Intuvo 9000进行水和土壤样品中柴油类总石油烃含量的快速分段检测方法[J].环境化学, 2017, 36(8):1877-1879.

    Google Scholar

    Zhang J Q, Gu J.Fast analysis of total petroleum hydrocarbon fractions as diesel range organics in water and soil samples using Agilent Intuvo 9000 gas chromatography[J].Environmental Chemistry, 2017, 36(8):1877-1879.

    Google Scholar

    [14] 钟灿红, 孙丹, 张慧, 等.水中萃取性石油烃的气相色谱分析方法[J].浙江化工, 2017, 48(6):51-54. doi: 10.3969/j.issn.1006-4184.2017.06.016

    CrossRef Google Scholar

    Zhong C H, Sun D, Zhang H, et al.EPH determination in water matrix by GC[J].Zhejiang Chemical Industry, 2017, 48(6):51-54. doi: 10.3969/j.issn.1006-4184.2017.06.016

    CrossRef Google Scholar

    [15] Sui H, Hua Z T, Li X G, et al.Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils[J].Environmental Science Pollution Research, 2014, 21:5774-5784. doi: 10.1007/s11356-014-2511-x

    CrossRef Google Scholar

    [16] 陈帅, 赵洋甬, 高飞.土壤中总石油烃预处理方法研究[J].环境科学与管理, 2017, 42(7):85-90. doi: 10.3969/j.issn.1673-1212.2017.07.021

    CrossRef Google Scholar

    Chen S, Zhao Y Y, Gao F.Research on testing method of total petroleum hydrocarbons in soil[J].Environmental Science and Management, 2017, 42(7):85-90. doi: 10.3969/j.issn.1673-1212.2017.07.021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(3)

Article Metrics

Article views(1270) PDF downloads(134) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint