Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 5
Article Contents

Lin YANG, Xue-lei LI, Xiang-shu WANG, Xiao-yan WANG, Wen-tao WANG, Hua-yun HAN. Determination of Available Cobalt in Soils by Flame Atomic Absorption Spectrometry with Cloud Point Extraction[J]. Rock and Mineral Analysis, 2013, 32(5): 775-779.
Citation: Lin YANG, Xue-lei LI, Xiang-shu WANG, Xiao-yan WANG, Wen-tao WANG, Hua-yun HAN. Determination of Available Cobalt in Soils by Flame Atomic Absorption Spectrometry with Cloud Point Extraction[J]. Rock and Mineral Analysis, 2013, 32(5): 775-779.

Determination of Available Cobalt in Soils by Flame Atomic Absorption Spectrometry with Cloud Point Extraction

More Information
  • Toxicological studies have shown that available heavy metals is critical for risk assessment purpose since their transformations and potential toxicity depends, not only on total content, but also on the special chemical forms of the heavy metals. It is very difficult to measure heavy metals in soil by direct instrumental analysis due to the low contents of avalaible metals in soil samples and interference components. In the present paper, a novel procedure was proposed for the determination of available cobalt in soils by flame atomic absorption spectrometry with Cloud Point Extraction (CPE). In the proposed approach, 0.1 mol/L hydrochloric acid (HCl) was used as the extraction agent and methyl red as a chelating agent, with Triton X-114 being selected as the surfactant. The method improved the selectivity and sensitivity of determination. Under optimized conditions, the linear range is from 0.10 to 2.00 μg/mL, the detection limit is 0.03 μg/mL, the recoveries of the procedure ranged from 94.0% to 104.0%, and the relative standard deviation is 3.3% (ρ=0.5 μg/mL,n=9). It was found that the proportion of available cobalt is very different in soils from different areas. The contents of available heavy metals better reflected the information concerning the migration ability of heavy metals in soil, occurrence status and risk assessment.
  • 加载中
  • [1] Han H Y, Zhou J, Xu Y Y, Jia C L, Xia H. Determination of water-soluble and acid-soluble zinc in soils by flame atomic absorption spectrometry after cloud point extraction [J].Soil Science and Plant Analysis,2012,43(18):2389-2399. doi: 10.1080/00103624.2012.708072

    CrossRef Google Scholar

    [2] 查立新,马玲,刘文长,刘洪青,陈波,冯玲玲.振荡提取和超声提取用于土壤样品中元素形态分析[J].岩矿测试,2011,30(4):393-399.

    Google Scholar

    [3] Han H Y, Xu Y Y, Zhang C.Determination of available cadmium and lead in soil by flame atomic absorption spectrometry after cloud point extraction [J].Soil Science and Plant Analysis,2011,42(14):1739-1751. doi: 10.1080/00103624.2011.584595

    CrossRef Google Scholar

    [4] 尹君,刘文菊,谢建治,肖崇彬.土壤中有效态镉、汞浸提剂和浸提条件研究[J].河北农业大学学报,2000,23(20):25-28.

    Google Scholar

    [5] 靳霞.土壤中重金属有效态的联合测定及其植物修复研究[D].临汾:山西师范大学,2012.

    Google Scholar

    [6] 王畅,郭鹏然,陈杭亭,舒永红.土壤和沉积物中重金属生物可利用性的评估[J].岩矿测试,2009,28(2):108-112.

    Google Scholar

    [7] HJ/T 166—2004,土壤环境监测技术规范[S].

    Google Scholar

    [8] 李亮亮,张大庚,李天来,依艳丽,臧健,胡睿.土壤有效态重金属提取剂选择的研究[J].土壤,2008,40(5):819-823.

    Google Scholar

    [9] 熊礼明,鲁如坤. 土壤有效Cd浸提剂对Cd的浸提机制[J].环境化学,1992,11(3):41-47.

    Google Scholar

    [10] 梁沛,李春香,秦永超,胡斌,江祖成.纳米二氧化钛分离富集和ICP-AES测定水样中Cr(Ⅵ)/Cr(Ⅲ) [J].分析科学学报,2000,16(4):300-303.

    Google Scholar

    [11] Hosseini M S, Sarab A R R.Cr(Ⅵ)/Cr(Ⅲ) speciation in water samples by extractive separation using Amberlite CG 50 and final determination by FAAS [J].Inter-national Journal of Environmental Analytical Chemistry,2007,87(5):375-385. doi: 10.1080/03067310601068866

    CrossRef Google Scholar

    [12] Marques M J, Salvador A, Morales-Rubio A, de la Guardia M. Chromium speciation in liquid matrices:A survey of the literature [J].Fresenius Journal of Analytical Chemistry,2000,367(7):601-613. doi: 10.1007/s002160000422

    CrossRef Google Scholar

    [13] Balcerzak M, Swiecicka E.Determination of ruthenium and osmium in each other′s presence in chloride solutions by direct and third order derivative spectrophotometry [J].Talanta,1996,43:471-478. doi: 10.1016/0039-9140(95)01776-3

    CrossRef Google Scholar

    [14] Keith L H,Gron L U,Young J L. Green analytical methodologies [J].Chemical Reviews,2007,107(6):2695-2708. doi: 10.1021/cr068359e

    CrossRef Google Scholar

    [15] LY/T 1260—1999,森林土壤有效铜的测定[S].

    Google Scholar

    [16] GB/T 17138—1997,土壤质量;铜、锌的测定;火焰原子吸收分光光度法[S].

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(593) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint