Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 4
Article Contents

Li-jun KUAI, Xing-tao1 FAN, Xiu-chun ZHAN, Ya-mei GAO, Ji-sheng LI, Qing-hai JU. On-site Analysis of Cu, Pb and Zn in Polymetallic Ores from Qimantage Area by Vehicle-loaded Polarized Energy Dispersive X-ray Fluorescence Spectrometer with Acid Digestion[J]. Rock and Mineral Analysis, 2013, 32(4): 538-546.
Citation: Li-jun KUAI, Xing-tao1 FAN, Xiu-chun ZHAN, Ya-mei GAO, Ji-sheng LI, Qing-hai JU. On-site Analysis of Cu, Pb and Zn in Polymetallic Ores from Qimantage Area by Vehicle-loaded Polarized Energy Dispersive X-ray Fluorescence Spectrometer with Acid Digestion[J]. Rock and Mineral Analysis, 2013, 32(4): 538-546.

On-site Analysis of Cu, Pb and Zn in Polymetallic Ores from Qimantage Area by Vehicle-loaded Polarized Energy Dispersive X-ray Fluorescence Spectrometer with Acid Digestion

More Information
  • Polarized Energy Dispersive X-ray Fluorescence Spectrometer is used as a common analytical method for exploration and prospecting on-site, but it constraints the on-site analysis of the high salinity geological or ore sample, for the serious matrix effects and insufficient calibration sample with matrix matching and affects the accuracy of the analysis results, even returning incorrect results. A method is presented in this paper for on-site analysis of Cu, Pb and Zn in polymetallic ores in Qimantage area, Qinghai province. The method is based on a vehicle-loaded Polarized Energy Dispersive X-ray Fluorescence Spectrometry (PE-EDXRF) with solution preparation of samples. Calibrations were conducted by utilizing standard solutions. Compton scattering intensities of Mo Kα from the secondary target were used as the internal standard to compensate for the matrix effect. The precision of the method was examined by on-site analyzing two geological samples from the local mine. Two kinds of double cabin sample cups with acid absorbent and double supporting films were developed to prevent the spectrometer from damage by the possible leakage and evaporation of the acidic sample solution. Two different procedures of ore sample digestion were tested on site and are described in this paper. The relative standard deviations (RSD, n=10) were in the range of 1.08% to 2.13%, when samples were pretreated by the second procedure. The accuracy and reliability of the method were tested by on-site analyzing of 4 quality control samples from Application Center for Geological Test of Qinghai Province and 13 geological samples from the local mine. When samples were pretreated using the second procedure, relative errors less than 5.0% were obtained for the 4 quality control samples with the element concentration higher than 0.5%. For the 13 local mine samples, PE-EDXRF results were compared with Atomic Absorption Spectroscopy (AAS) ones, the obtained correlation coefficients for Cu, Pb and Zn were 0.9984, 0.9986, 0.9997 respectively, and the corresponding linear regression equations were wAAS(Cu)=0.9882×wPE-EDXRF+0.0213, wAAS(Pb)=1.0365 0.1265,wPE-EDXRF-0.1265, wAAS(Zn)=1.0250×wPE-EDXRF+0.0186. When the concentration of Cu was 0.75%-8.57%, Pb was 0.78%-29.1%, Zn was 0.11%-2.51%, average relative deviations of Cu, Pb and Zn, between PE-EDXRF results and AAS ones of the 13 local mine samples were 2.87%, 2.82% and 6.84%. We conclude that the vehicle-loaded PE-EDXRF coupled with the double cabin sample cups and the second procedure offers a satisfactory solution for high precision on-site polymetallic ore sample analysis. The above work is to expand the capability of PE-EDXRF on-site analysis to various metal ore matrix samples and is a supplement to the already established powder sample preparation method.
  • 加载中
  • [1] Campbell W C. Energy-dispersive X-ray emission analysis:A review [J].X-Ray Spectrometry,1979,104(1236): 177-195.

    Google Scholar

    [2] PottsP J, Webb P C, Watson J S.Energy-dispersive X-ray fluorescence analysis of silicate rocks for major and trace elements [J].X-Ray Spectrometry,1984,13(1): 2-15. doi: 10.1002/(ISSN)1097-4539

    CrossRef Google Scholar

    [3] Margolin E M, Pronin Y I, Choporov D Y, Shiłnikov A M, Komyak N I, Goganov D A, Serebryakov A S, Fed′kov E A. Some experience in using the MECA-10-44 (XR-500) X-ray fluorescence analyser for solving geological problems [J].X-Ray Spectrometry, 1985, 14(2): 56-61. doi: 10.1002/(ISSN)1097-4539

    CrossRef Google Scholar

    [4] Potts P J, Webb P C, Watson J S. Silicate rock analysis by energy-dispersive X-ray fluorescence using a cobalt anode X-ray tube. Part Ⅰ. Optimisation of excitation conditions for chromium, vanadium, barium and the major elements [J].Journal of Analytical Atomic Spectrometry, 1986, 1(6): 467-471. doi: 10.1039/ja9860100467

    CrossRef Google Scholar

    [5] Potts P J, Webb P C, Watson J S, Wright D W. Silicate rock analysis by energy-dispersive X-ray fluorescence using a cobalt anode X-ray tube. Part 2. Practical application and routine performance in the determination of chromium, vanadium and barium [J].Journal of Analytical Atomic Spectrometry, 1987, 2(1): 67-72. doi: 10.1039/ja9870200067

    CrossRef Google Scholar

    [6] Civici N, van Grieken R. Energy-dispersive X-ray fluorescence analysis in geochemical mapping [J].X-Ray Spectrometry, 1997, 26(4): 147-152. doi: 10.1002/(ISSN)1097-4539

    CrossRef Google Scholar

    [7] Stark S C, Snape Ian, Graham, Nicholas J, Brennan J C, Gore D B. Assessment of metal contamination using X-ray fluorescence spectrometry and the toxicity characteristic leaching procedure (TCLP) during remediation of a waste disposal site in Antarctica [J].Journal of Environmental Monitoring, 2008, 10(1): 60-70. doi: 10.1039/B712631J

    CrossRef Google Scholar

    [8] HÜrkamp K, Raab T, VÖlkel J. Two and three-dimen-sional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis [J].Geomorphology, 2009, 110(1): 28-36.

    Google Scholar

    [9] Luo L Q, Chu B B, Li Y C, Xu T, Wang X F, Yuan J, Sun J L, Liu Y, Bo Y, Zhan X C. Determination of Pb, As, Cd and trace elements in polluted soils near a lead-zinc mine using polarized X-ray fluorescence spectrometry and the characteristics of the elemental distribution in the area [J].X-Ray Spectrometry, 2012, 41(3): 133-143. doi: 10.1002/xrs.2364

    CrossRef Google Scholar

    [10] Stallard M O, Apitz S E, Dooley C A. X-ray fluore-scence spectrometry for field analysis of metals in marine sediments [J].Marine Pollution Bulletin, 1995, 31(4): 297-305.

    Google Scholar

    [11] Swinyard B M, Joy K H, Kellett B J, Crawford I A, Grande M, Howe C J, Fernandes V A, Gasnault O, Lawrence D J, Russell S S, Wieczorek M A, Foing B H. The SMART-1 team,an X-ray fluorescence observations of the moon by SMART-1/D-CIXs and the first detection of Ti Kα from the Lunar surface [J].Planetary and Space Science, 2009, 57: 744-750. doi: 10.1016/j.pss.2009.01.009

    CrossRef Google Scholar

    [12] Yamamoto Y, Okada T, Shiraishi H, Shirai K, Arai T, Ogawa K, Hosono K, Arakawa M, Kato M. Current status of X-ray spectrometer development in the SELENE project [J].Advances in Space Research, 2008, 42(2): 305-309. doi: 10.1016/j.asr.2007.04.057

    CrossRef Google Scholar

    [13] Okada T, Kato M, Fujimura A, Tsunemi H, Kitamoto S. X-ray fluorescence spectrometer onboard Muses-C [J].Advances in Space Research, 2000, 25(2): 345-348. doi: 10.1016/S0273-1177(99)00942-4

    CrossRef Google Scholar

    [14] Oscar G F, Sofia P, Ignacio Q, Maria L C. Analysis of lead content in automotive shredder residue (ASR) [J].Waste Management, 2009, 29(9): 2549-2552. doi: 10.1016/j.wasman.2009.05.003

    CrossRef Google Scholar

    [15] 杨雪梅, 庹先国, 任家富,陶永莉, 曾旖, 穆克亮. 用于在线X荧光分析的自动制样送测系统的研制[J].冶金自动化, 2007, 31(3): 44-47.

    Google Scholar

    [16] Wobrauschek P, Aiginger H.X-ray fluorescence analysis using intensive linear polarized monochromatic X-rays after bragg reflection [J].X-Ray Spectrometry, 1980, 9(2): 57-59. doi: 10.1002/(ISSN)1097-4539

    CrossRef Google Scholar

    [17] Wobrauschek P, Aiginger H.X-ray fluorescence analysis with a linear polarized beam after bragg reflection from a flat or a curved single crystal [J].X-Ray Spectrometry, 1983, 12(2): 72-78. doi: 10.1002/(ISSN)1097-4539

    CrossRef Google Scholar

    [18] Ong P S, Randall J N.A focusing X-ray polarizer for energy-dispersive analysis [J].X-Ray Spectrometry, 1978, 7(4): 241-248. doi: 10.1002/(ISSN)1097-4539

    CrossRef Google Scholar

    [19] Heckel J, Brumme M, Weinert A, Irmer K.Multi-element trace analysis of rocks and soils by EDXRF using polarized radiation [J].X-Ray Spectrometry, 1991, 20(6):287-292. doi: 10.1002/(ISSN)1097-4539

    CrossRef Google Scholar

    [20] Heckel J, Haschke M, Brumme M, Schindler R. Principles and applications of energy-dispersive X-ray fluorescence analysis with polarized radiation [J].Journal of Analytical Atomic Spectrometry, 1992, 7(2): 281-286. doi: 10.1039/ja9920700281

    CrossRef Google Scholar

    [21] Heckel J.Using Barkla polarized X-ray radiation in energy dispersive X-ray fluorescence analysis [J].Journal of Trace and Microprobe Techniques, 1995, 2(13): 97.

    Google Scholar

    [22] Kramar U. Advances in energy-dispersive X-ray fluore-scence [J].Journal of Geochemical Exploration, 1997, 58(1): 73-80. doi: 10.1016/S0375-6742(96)00053-2

    CrossRef Google Scholar

    [23] 詹秀春,罗立强.偏振激发-能量色散X射线荧光光谱法快速分析地质样品中34种元素[J].光谱学与光谱分析, 2003, 23(4): 804-807.

    Google Scholar

    [24] Zhan X C.Application of polarized EDXRF in geochemical sample analysis and comparison with WDXRF [J].X-Ray Spectrometry,2005, 34(3): 207-212. doi: 10.1002/(ISSN)1097-4539

    CrossRef Google Scholar

    [25] 谢荣厚,詹秀春.水泥生料的偏振化能量色散X射线荧光光谱分析[J].中国建材科技,2002, 11(6): 46-48.

    Google Scholar

    [26] 谢荣厚,詹秀春.高炉渣的偏振化能量色散X射线荧光光谱分析[J].冶金分析,2004,24(2): 37-39.

    Google Scholar

    [27] 葛镧,甄洪香,徐增芹.偏振式能量色散X射线荧光光谱仪分析高炉渣[J].理化检验:化学分册, 2007, 43(6): 450-451.

    Google Scholar

    [28] 樊兴涛,詹秀春,巩爱华.能量色散X射线荧光光谱法测定卤水中痕量溴铷砷[J].岩矿测试, 2004, 23(1): 15-18.

    Google Scholar

    [29] 樊兴涛,詹秀春,巩爱华.偏振激发-能量色散X射线荧光光谱法测定卤水中主量元素硫氯钾钙[J].岩矿测试, 2007, 26(2): 109-116.

    Google Scholar

    [30] 樊守忠,张勤,吉昂.偏振能量色散X-射线荧光光谱法测定水系沉积物和土壤样品中多种组分[J].冶金分析, 2006, 26(6): 27-31.

    Google Scholar

    [31] 王平,王焕顺,李玉璞.偏振能量色散X射线荧光光谱法测定土壤中金属元素[J].环境监测管理与技术, 2008, 20(3): 41-43.

    Google Scholar

    [32] 耿刚强,宁国东,王巧玲,丁慧,朱明达,白福全,董海成,牛素琴,王再田.XEPOS型偏振能量色散X射线荧光光谱仪分析蒙古铁矿石[J].岩矿测试, 2008, 27(6): 423-426.

    Google Scholar

    [33] 甄洪香,徐增芹,葛镧.能量色散偏振X射线荧光光谱法测定生铁中锰和钛[J].理化检验:化学分册, 2008, 44(2): 164-165.

    Google Scholar

    [34] 葛良全.现场X射线荧光分析技术[J].岩矿测试,2013, 32(2): 203-212.

    Google Scholar

    [35] 詹秀春,樊兴涛,李迎春,王祎亚.直接粉末制样-小型偏振激发能量色散 X 射线荧光光谱法分析地质样品中多元素[J].岩矿测试, 2009, 28(6): 501-506.

    Google Scholar

    [36] 樊兴涛,李迎春,王广,白金峰,姚文生,袁继海,詹秀春.车载台式能量色散X射线荧光光谱仪在地球化学勘查现场分析中的应用[J].岩矿测试,2011,30(2): 155-159.

    Google Scholar

    [37] 龙昌玉,李小莉,张勤,李国会.能量色散X射线荧光光谱仪现场快速测定多金属矿中17种组分[J].岩矿测试, 2010, 29(3): 313-315.

    Google Scholar

    [38] de Vries J L, Vrebos B A R, Grieken R V, Markowicz A A.Handbook of X-ray Spectrometry: Methods and Techniques [M].1993: 657-687.

    Google Scholar

    [39] 符斌,方明渭,周杰,岳永平,李华昌,王红霞.用于X射线荧光光谱分析的凝胶制样法[J].冶金分析, 2002, 22(5): 6-9.

    Google Scholar

    [40] Zhang G, Hu X, Ma H.A gel sample preparation method for the analysis of zinc concentrates by WD-XRF [J].Minerals Engineering, 2009, 22(4): 348-351. doi: 10.1016/j.mineng.2008.10.001

    CrossRef Google Scholar

    [41] 温宏利,马生凤,马新荣,王蕾,范凡.王水溶样-电感耦合等离子体发射光谱法同时测定铁铜铅锌硫化物矿石中8个元素[J].岩矿测试, 2011, 30(5): 566-571.

    Google Scholar

    [42] DZG 93-01,中华人民共和国地质矿产部部规程;火焰原子吸收分光光度法测定铜、铅、锌量[S].1994: 18-38.

    Google Scholar

    [43] 吉昂,卓尚军,李国会.能量色散X射线荧光光谱[M].北京:科学出版社,2011: 331-332.

    Google Scholar

    [44] 范凡,温宏利,屈文俊,曹亚萍.王水溶样-等离子体质谱法同时测定地质样品中砷锑铋银镉铟[J].岩矿测试, 2009,28(4): 333-336.

    Google Scholar

    [45] 周丽萍,李中玺.王水提取-电感耦合等离子体质谱法同时测定地质样品中微量银、镉、铋[J].分析试验室, 2005, 24(9): 20-25.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(6)

Article Metrics

Article views(734) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint