Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 3
Article Contents

Jing REN, Chao LI, Yu-ping LIU, Zhen-kun WU, Lei REN. Study on the Method for Quartz Purification and Separation of Cosmogenic 10Be and 26Al in Samples from Fluvial Terraces[J]. Rock and Mineral Analysis, 2018, 37(3): 275-282. doi: 10.15898/j.cnki.11-2131/td.201710310171
Citation: Jing REN, Chao LI, Yu-ping LIU, Zhen-kun WU, Lei REN. Study on the Method for Quartz Purification and Separation of Cosmogenic 10Be and 26Al in Samples from Fluvial Terraces[J]. Rock and Mineral Analysis, 2018, 37(3): 275-282. doi: 10.15898/j.cnki.11-2131/td.201710310171

Study on the Method for Quartz Purification and Separation of Cosmogenic 10Be and 26Al in Samples from Fluvial Terraces

More Information
  • In situ produced 10Be and 26Al in fluvial terrace samples that have been repeatedly buried and exposed to the evolution process are difficult to separate using conventional methods. Based on prior experiments, 10Be in carbonate, iron-bearing mineral and 10Be produced in the atmosphere were separated by manual hand picking, magnetic separator sorting and acid washing methods, improving the procedure of purifying the quartz samples. The results show that anion exchange column, with a length of 9 cm and inner diameter of 1cm, matched 4 mol/L hydrofluoric acid leachate, can effectively separate B, Mg, Ca, Cr, Fe, Mn, Ni, Ti and Mn. The recoveries of Be and Al are 95.7% and 85.7%, resepectively. Be and Al can be separated by ion exchange very well which have recoveries up to 85%. The procedure blanks are 2.19×10-15 and 1.63×10-15 for 10Be/9Be and 26Al/27Al, respectively which are comparable with other labs. The exposure ages of Chengdu Plain alluvial elements are 76.36±9.51 ka for 10Be and 69.44±14.13 ka for 26Al, which provides a chronological basis for evaluating the structural features and activities of buried faults in the front of the Longmenshan.
  • 加载中
  • [1] Molliex S, Siame L S, Bourles D L, et al.Quaternary evolution of a large alluvial fan in a periglacial setting (Crau Plain, SE France) constrained by terrestrial cosmogenic nuclide (10Be)[J].Geomorphology, 2013, 195(1):45-52.

    Google Scholar

    [2] Maher K, Blanckenburg F.Surface ages and weathering rates from 10Be (meteoric) and 10Be/9Be:Insights from differential mass balance and reactive transport modeling[J].Chemical Geology, 2016, 44(23):70-86.

    Google Scholar

    [3] Dehnert A, Kracht O, Preusser F, et al.Cosmogenic isotope burial dating of fluvial sediments from the Lower Rhine Embayment, Germany[J].Quaternary Geochronology, 2011, 6(3-4):313-325. doi: 10.1016/j.quageo.2011.03.005

    CrossRef Google Scholar

    [4] 胡凯, 方小敏, 赵志军, 等.宇宙成因核素10Be揭示的北祁连山侵蚀速率特征[J].地球科学进展, 2015, 30(2):268-275. doi: 10.11867/j.issn.1001-8166.2015.02.0268

    CrossRef Google Scholar

    Hu K, Fang X M, Zhao Z J, et al.Erosion rates of northern Qilian Mountains revealed by cosmogenic 10Be[J].Advances in Earth Science, 2015, 30(2):268-275. doi: 10.11867/j.issn.1001-8166.2015.02.0268

    CrossRef Google Scholar

    [5] Cui L F, Liu C Q, Xu S, et al.The long-term denudation rate of granitic regolith in Qinhuangdao, North China determined from the in situ depth profile of the cosmogenic nuclides 26Al and 10Be[J].Chinese Science Bulletin, 2014, 59:4823-4828. doi: 10.1007/s11434-014-0601-2

    CrossRef Google Scholar

    [6] 吕延武, 顾炎武, Aldahan A, 等.内蒙古额济纳盆地戈壁10Be暴露年龄与洪积作用的演化[J].科学通报, 2010, 55(27-28):2719-2727.

    Google Scholar

    Lü Y W, Gu Y W, Aldahan A, et al.10Be in quartz gravel from the Gobi desert and evolutionary history of alluvial sedimentation in the Ejina Basin, Inner Mongolia[J].Chinese Science Bulletin, 2010, 55(27-28):2719-2727.

    Google Scholar

    [7] 张珂, 蔡剑波.黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动[J].第四纪研究, 2006, 26(1):85-91.

    Google Scholar

    Zhang K, Cai J B.Preliminare result of the dating by TCN technique of the highest terrace of the Hei Shan Xia Gorge Mouth, northeast margin of Tibetan Plateau and its expression of neotectionic movement in that area[J].Quaternary Sciences, 2006, 26(1):85-91.

    Google Scholar

    [8] Gribenski N, Jansson K N, Lukas S, et al.Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai[J].Quaternary Science Reviews, 2016, 149:288-305. doi: 10.1016/j.quascirev.2016.07.032

    CrossRef Google Scholar

    [9] Xue B L, Guan J S, Hua T, et al.Initial 26Al/10Be burial dating of the hominin site Bailong Cave in Hubei Province, Central China[J].Quaternary International, 2015, 389:235-240. doi: 10.1016/j.quaint.2014.10.028

    CrossRef Google Scholar

    [10] Kong P, Zheng Y, Fu B.Cosmogenic nuclide burial ages and provenance of late cenozoic deposits in the Sichuan Basin:Implications for early quaternary glaciations in East Tibet[J].Quaternary Geochronology, 2011, 6(3-4):304-312. doi: 10.1016/j.quageo.2011.03.006

    CrossRef Google Scholar

    [11] Kong P, Granger D, Wu F Y, et al.Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake:Implications for evolution of the Middle Yangtze River[J].Earth and Planetary Science Letters, 2009, 278:131-141. doi: 10.1016/j.epsl.2008.12.003

    CrossRef Google Scholar

    [12] Wolkowinsky A J, Granger D E.Early pleistocene incision of the San Juan River, Utah, dated with 26Al and 10Be[J].Geology, 2004, 32(9):749-752. doi: 10.1130/G20541.1

    CrossRef Google Scholar

    [13] Granger D E, Muzikar P F.Dating sediment burial with in situ-produced cosmogenic nuclides:Theory, techniques and limitations[J].Earth and Planet Science Letters, 2001, 188:269-281. doi: 10.1016/S0012-821X(01)00309-0

    CrossRef Google Scholar

    [14] Stock G M, Anderson R S, Finkel R C.Rates of erosion and topographic evolution of the Sierra Nevada, California, inferred from cosmogenic 26Al and 10Be concentrations[J].Earth Surface Process and Landforms, 2005, 30:985-1006. doi: 10.1002/(ISSN)1096-9837

    CrossRef Google Scholar

    [15] Balco G, Stone J O, Lifton N A, et al.A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements[J].Quaernary Geochronology, 2008, 3(3):174-195. doi: 10.1016/j.quageo.2007.12.001

    CrossRef Google Scholar

    [16] Gosse J C, Phillips F M.Terristrial in situ cosmogenic nuclides:Theory and application[J].Quaternary Science Review, 2001, 20:1475-1560. doi: 10.1016/S0277-3791(00)00171-2

    CrossRef Google Scholar

    [17] Heisinger B, Lal D, Jull A J T, et al.Production of selected cosmogenic radionuclides by muons:2.Capture of negative muons[J].Earth and Planetary Science Letters, 2002, 200(3-4):357-369. doi: 10.1016/S0012-821X(02)00641-6

    CrossRef Google Scholar

    [18] Lal D.Cosmic ray labeling of erosion surfaces:In situ nuclides production rates and erosion models[J].Earth and Planetary Science Letters, 1991, 104:424-439. doi: 10.1016/0012-821X(91)90220-C

    CrossRef Google Scholar

    [19] Rodes A, Pallas R, Braucher R, et al.Effect of density uncertainties in cosmogenic 10Be depth-profiles:Dating a cemented Pleistocene alluvial fan (Carboneras Fault, SE Iberia)[J].Quaternary Geochronology, 2011, 6:186-194. doi: 10.1016/j.quageo.2010.10.004

    CrossRef Google Scholar

    [20] Corbett L B, Bierman P R, Rood D H.An approach for optimizing in situ cosmogenic 10Be sample preparation[J].Quaternary Geochronology, 2016, 33:24-34. doi: 10.1016/j.quageo.2016.02.001

    CrossRef Google Scholar

    [21] 赵国庆, 张丽, 孔祥辉, 等.黄土中宇宙成因核素10Be提取条件检验[J].地球环境学报, 2017, 8(2):169-175. doi: 10.7515/JEE201702009

    CrossRef Google Scholar

    Zhao G Q, Zhang L, Kong X H, et al.Optimizing experimental conditions of extraction cosmogenic nuclide 10Be in loess[J].Journal of Earth Environment, 2017, 8(2):169-175. doi: 10.7515/JEE201702009

    CrossRef Google Scholar

    [22] 李海旭, 沈冠军, 周耀明.宇生核素26Al/10Be埋藏法测年铝化学分析程序的改进[J].岩矿测试, 2013, 32(4):555-560.

    Google Scholar

    Li H X, Shen G J, Zhou Y M.Improvements for analytical procedure of Al for cosmogenic 26Al/10 Be burial dating[J].Rock and Mineral Analysis, 2013, 32(4):555-560.

    Google Scholar

    [23] 张丽, 周卫健, 常宏, 等.暴露测年样品中26Al和10Be分离及其加速器质谱测定[J].岩矿测试, 2012, 31(1):83-89.

    Google Scholar

    Zhang L, Zhou W J, Chang H, et al.The extraction of in-situ 10Be and 26Al from rock sample and accelerator mass spectrometric measurements[J].Rock and Mineral Analysis, 2012, 31(1):83-89.

    Google Scholar

    [24] Hunt A, Larsen J, Bierman P, et al.Investigation of factors that affect the sensitivity of accelerator mass spectrometry for cosmogenic 10Be and 26Al isotope analysis[J].Analytical Chemistry, 2008, 80:1656-1663. doi: 10.1021/ac701742p

    CrossRef Google Scholar

    [25] Stone J.A rapid fusion method for separation of beryllium-10 from soils and silicates[J].Geochimica et Cosmochimca, 1998, 62:555-561. doi: 10.1016/S0016-7037(97)00340-2

    CrossRef Google Scholar

    [26] Tuniz C.Accelerator mass spectrometry:Ultra-sensitive analysis for global science[J].Radiation Physics and Chemistry, 2001, 61:317-322. doi: 10.1016/S0969-806X(01)00255-9

    CrossRef Google Scholar

    [27] Dunai T J, Stuart F M.Reporting of cosmogenic nuclide data for exposure age and erosion rate determinations[J].Quaternary Geochronology, 2009, 4:437-440. doi: 10.1016/j.quageo.2009.04.003

    CrossRef Google Scholar

    [28] 易惟熙, 沈承德, 欧阳自远, 等.AMS——BeO制备技术及10Be的测定[J].核物理, 1991, 14(1):33-35.

    Google Scholar

    Yi W X, Shen C D, Ouyang Z Y, et al.The preparation of AMS-BeO and the measurements of 10Be[J].Nuclear Techniques, 1991, 14(1):33-35.

    Google Scholar

    [29] 武振坤, 周卫健, 刘敏, 等.黄土样品的BeO制备及AMS测量[J].核技术, 2008, 31(6):427-432.

    Google Scholar

    Wu Z K, Zhou W J, Liu M, et al.BeO preparation and AMS measurement result for loess samples[J].Nunlear Techniques, 2008, 31(6):427-432.

    Google Scholar

    [30] 卢仁, 林杨挺, 欧阳自远, 等.陨石中宇宙成因核素10Be和26Al的化学分离纯化[J].地球化学, 2008, 37(2):149-156.

    Google Scholar

    Lu R, Lin Y T, Ouyang Z Y, et al.Chemical separation and purification of cosmogenic radionuclides 10Be and 26Al in meteorites[J].Geochimica, 2008, 37(2):149-156.

    Google Scholar

    [31] 钱洪, 唐荣昌.成都平原的形成和演化[J].四川地震, 1997(3):1-7.

    Google Scholar

    Qian H, Tang R C.On the formaintion and evolution of the Chengdu plain[J].Sichuan Earthquake, 1997(3):1-7.

    Google Scholar

    [32] 刘保金, 张先康, 酆少英, 等.龙门山山前彭州隐伏断裂高分辨率地震反射剖面[J].地球物理学报, 2009, 52(2):538-546.

    Google Scholar

    Liu B J, Zhang X K, Feng S Y, et al.High-resolution seismic reflection profile across Pengzhou buried fault in frontal areas of Longmen Shan[J].Chinese Journal of Geophysics, 2009, 52(2):538-546.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(5)

Article Metrics

Article views(1153) PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint