Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 4
Article Contents

Xia WU, Lin-ling TU, Hui YANG, Hua WANG, Xiao-yan ZHU, Mei-liang ZHANG. Contrastive Study of Sample-pretreatment Effects on Analytical Results of Inorganic Carbon Isotopes in Water Sample[J]. Rock and Mineral Analysis, 2013, 32(4): 649-658.
Citation: Xia WU, Lin-ling TU, Hui YANG, Hua WANG, Xiao-yan ZHU, Mei-liang ZHANG. Contrastive Study of Sample-pretreatment Effects on Analytical Results of Inorganic Carbon Isotopes in Water Sample[J]. Rock and Mineral Analysis, 2013, 32(4): 649-658.

Contrastive Study of Sample-pretreatment Effects on Analytical Results of Inorganic Carbon Isotopes in Water Sample

  • The pretreatments for the measurement of dissolved inorganic carbon (DIC) isotopes in field water samples were developed from traditional BaCl2 precipitation methods to directly continuous flow (GasBench-IRMS) methods. Further research needs be conducted to distinguish the difference between the traditional BaCl2 precipitation methods and the continuous flow (GasBench-IRMS) method in order to select the best pretreatment for DIC. This study compared the results obtained by three pretreatment methods: BaCl2 precipitation, medical sterile high-density polyethylene bottles and acidification of the sample in GasBench headspace vials in field work. Drip water and underground water samples were collected from Panlong cave in Guilin. The results show that because of CO2 escape from the water sample, by using the BaCl2 precipitation the value of the carbon isotope was more positive than other sample-pretreatment methods. The maximum deviation of the carbon isotope value from the underground river is 0.26. The maximum deviation of the carbon isotope value from the cave drip water is 0.33. The temperature and atmospheric pressure are similar in the field and the laboratory, therefore it did not cause solubility change of CO2 and HCO-3 in water samples. The DIC results of the medical sterile high-density polyethylene bottles and GasBench headspace vials are the same. The GasBench headspace vials pretreatment method can effectively avoid the solubility change of CO2 and HCO-3 caused by environmental changes, which leads to the CO2 escape from the water sample or dissolved into the water sample from the atmosphere of CO2. This change may cause carbon isotopic fractionation in DIC of water samples. Using GasBench headspace vials, which directly produce and collect CO2 gas in the field is the recommended DIC pretreatment method.
  • 加载中
  • [1] World Meteorological Organization. Greenhouse Gas bulletin: The State of Greenhouse in the Atmosphere Based on Global Observations Through 2009[R]. 2010: 2-3.

    Google Scholar

    [2] 袁道先.地球系统的碳循环和资源环境效应[J].第四纪研究,2001,21(3): 223-232.

    Google Scholar

    [3] 刘再华,王海静.一种由全球水循环产生的可能重要的CO2汇[J].科学通报,2007,52(20): 2418-2422. doi: 10.3321/j.issn:0023-074x.2007.20.013

    CrossRef Google Scholar

    [4] 袁道先.现代岩溶学与全球变化研究[J].地学前缘,1997,14(1-2): 17-24.

    Google Scholar

    [5] Liu Z, Dreybrodt W, Wang H. A new directing in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J].Earth-Science Reviews,2010,99: 162-172. doi: 10.1016/j.earscirev.2010.03.001

    CrossRef Google Scholar

    [6] Amiotte-Suchet P, Aubert D, Probst J L, Gauthier-Lafayea F, Probsta A, Andreuxb F, Vivillec D. δ13C pattern of dissolved inorganic carbon in a small granitic catchment: The strengbach case study (Vosges Mountains, France)[J].Chemical Geology,1999,159: 129-145. doi: 10.1016/S0009-2541(99)00037-6

    CrossRef Google Scholar

    [7] Wachniew P. Isotopic composition of dissolved inorganic carbon in a large polluted river: The Vistula, Poland[J].Chemical Geology,2006,233: 293-308. doi: 10.1016/j.chemgeo.2006.03.012

    CrossRef Google Scholar

    [8] 李干蓉,刘丛强,陈椽,王宝利,李军,李思亮,刘小龙,汪福顺.猫跳河流域梯级水库夏-秋季节溶解无机碳(DIC)含量及其同位素组成的分布特征[J].环境科学,2009,30(10): 2891-2897. doi: 10.3321/j.issn:0250-3301.2009.10.013

    CrossRef Google Scholar

    [9] 焦树林,陶贞,高全洲,刘昆,佘建伟,丁健,刘祖发.西江河口段溶解无机碳稳定同位素组成的时空变化[J].地理科学,2008,63(5): 553-560.

    Google Scholar

    [10] Bishop P K. Precipitation of dissolved carbonate species from natural waters for δ13C analysis-A critical appraisal[J].Chemical Geology,1990,80: 251-259.

    Google Scholar

    [11] 李廷勇.重庆地区石笋古环境信息影响因素及末次冰期以来气候变化的初步研究[D].重庆:西南大学,2007.

    Google Scholar

    [12] Matthews D E. Hayes J M. Isotope ration-motioning gas chromatography-mass spectrometry[J].Analytical Chemistry,1978,50(11): 1465-1473. doi: 10.1021/ac50033a022

    CrossRef Google Scholar

    [13] 陶成,张美珍,杨华敏,闫秋实,把立强.GasBench-IRMS水平衡氢同位素分析方法研究及应用[J].质谱学报,2006,24(4): 215-220.

    Google Scholar

    [14] 孙青,王晓华,石丽明,刘美美,储国强.GasBench-IRMS水平衡氢氧同位素分析方法研究[J].岩矿测试,2009,28(1): 1-4.

    Google Scholar

    [15] 张琳,陈宗宇,刘福亮,贾艳琨,张向阳,陈立.水中氢氧同位素不同分析方法的对比[J].岩矿测试,2011,30(2): 160-163.

    Google Scholar

    [16] 杨会,王华,应启和,林宇,涂林玲.不同检测方法对氢氧同位素分馏的影响[J].岩矿测试,2012,31(2): 225-228.

    Google Scholar

    [17] 陈锦芳,曹建平,纪丽红.河口水体中溶解CO2及其稳定同位素在线同时测定的技术研究[J].地球与环境,2012,40(4): 611-617.

    Google Scholar

    [18] 杨涛,蒋少涌,赖鸣远,杨红,葛璐,凌洪飞.连续流同位素质谱法测定水中溶解无机碳含量和同位素组成的方法研究[J].地球化学,2006,35(6): 675-680.

    Google Scholar

    [19] 张美良,朱晓燕,林玉石,陈坤琨,何师意,王华,杨琰.桂林洞穴滴水及现代碳酸钙(CaCO3)沉积的碳同位素记录及其环境意义[J].地球学报,2009,30(5): 634-642.

    Google Scholar

    [20] 张美良,朱晓燕,李涛,邹丽霞.桂林现代洞穴碳酸盐-石笋的沉积速率及其环境意义[J].海洋地质与第四纪地质,2011,31(1): 125-134.

    Google Scholar

    [21] 杜广鹏,王旭,张福松.GasBench Ⅱ顶空瓶内空气背景对< 100μg碳酸盐中碳氧同位素在线测定的影响及校正方法初探[J].岩矿测试,2010,29(6): 631-638.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(2)

Article Metrics

Article views(657) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint