Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 1
Article Contents

Jiang-tao ZHAO, Wei-guo LIU, Zhi-sheng AN. The Disparity of Chain Length Distribution Patterns and Carbon Isotopic Compositions between Different Fatty Acid Purification Procedures[J]. Rock and Mineral Analysis, 2013, 32(1): 101-107.
Citation: Jiang-tao ZHAO, Wei-guo LIU, Zhi-sheng AN. The Disparity of Chain Length Distribution Patterns and Carbon Isotopic Compositions between Different Fatty Acid Purification Procedures[J]. Rock and Mineral Analysis, 2013, 32(1): 101-107.

The Disparity of Chain Length Distribution Patterns and Carbon Isotopic Compositions between Different Fatty Acid Purification Procedures

More Information
  • Saturated fatty acids and their isotopic composition are important proxies to reconstruct paleoenvironment and paleoclimate. There are several extraction and purification procedures of n-fatty acids based on different principles. However, a comparison test between different processes has not been reported. In this article, the agreement of fatty acid and its isotope compositions purified by different processes directly impacted on the proxies′ application, especially on the comparison of reconstruction results from different regions in global change research. Two common fatty acid purification procedures were used to purify lipids of fatty acid standards, plant and peat samples. For the standards, the recovery rates of these two procedures were all greater than 85%, which indicates that these two methods are reliable to process the n-fatty acids. However, for the plants and peats samples, Procedure 1 obtained a relatively large amount of shorter chain length n-fatty acids. According to our results, Procedure 2 obtained almost all of the free fatty acids, while Procedure 1 can obtain both the free and ester state n-fatty acids in the samples. Since the free state fatty acids and esters state fatty acids in the sediment can be transformed into each other, using Procedure 1 to analyze the total fatty acids in the sediment sample was more appropriate. Alternatively, we can also use the Procedure 2 after the ester-state fatty acids in the lipids were released as free state acids by saponification.
  • 加载中
  • [1] Cranwell P. Lipids of aquatic sediments and sedimenting particulates [J]. Progress in Lipid Research, 1982, 21: 271. doi: 10.1016/0163-7827(82)90012-1

    CrossRef Google Scholar

    [2] Huang Y, Shuman B, Wang Y, Webb T. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late Quaternary climate variations [J]. Geology, 2002, 30: 1103. doi: 10.1130/0091-7613(2002)030<1103:HIROPA>2.0.CO;2

    CrossRef Google Scholar

    [3] Naraoka H, Ishiwatari R. Molecular and isotopic abundances of long-chain n-fatty acids in open marine sediments of the western North Pacific [J].Chemical Geology,2000,165: 23-36. doi: 10.1016/S0009-2541(99)00159-X

    CrossRef Google Scholar

    [4] Tierney J E, Russell J M, Huang Y, Damst J S, Hopmans E C, Cohen A S. Northern hemisphere controls on tropical southeast African climate during the past 60000 years [J]. Science, 2008, 322: 252-255. doi: 10.1126/science.1160485

    CrossRef Google Scholar

    [5] Hughen K A, Eglinton T I, Xu L, Makou M. Abrupt tropical vegetation response to rapid climate changes [J]. Science, 2004, 304: 1955. doi: 10.1126/science.1092995

    CrossRef Google Scholar

    [6] Gao L, Hou J, Toney J, MacDonald D, Huang Y. Mathematical modeling of the aquatic macrophyte inputs of mid-chain n-alkyl lipids to lake sediments: Implications for interpreting compound specific hydrogen isotopic records [J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3781-3791. doi: 10.1016/j.gca.2011.04.008

    CrossRef Google Scholar

    [7] Sessions A, Burgoyne T, Schimmelmann A, Hayes J. Fractionation of hydrogen isotopes in lipid biosynthesis [J]. Organic Geochemistry, 1999, 30: 1193-1200. doi: 10.1016/S0146-6380(99)00094-7

    CrossRef Google Scholar

    [8] Li C, Sessions A L, Valentine D L, Thiagarajan N. D/H variation in terrestrial lipids from Santa Barbara Basin over the past 1400 years: A preliminary assessment of paleoclimatic relevance [J]. Organic Geochemistry, 2011, 42: 15-24. doi: 10.1016/j.orggeochem.2010.09.011

    CrossRef Google Scholar

    [9] 赵江涛,刘卫国,安芷生.贡嘎山现代植物叶蜡脂肪酸氢同位素组成及对海拔变化的响应[J].第四纪研究, 2011, 31(5): 856-863.

    Google Scholar

    [10] Chikaraishi Y, Suzuki Y, Naraoka H. Hydrogen isotopic fractionations during desaturation and elongation associated with polyunsaturated fatty acid biosynthesis in marine macroalgae [J]. Phytochemistry, 2004, 65: 2293-2300. doi: 10.1016/j.phytochem.2004.06.030

    CrossRef Google Scholar

    [11] Wang Z, Liu W. Carbon chain length distribution in n-alkyl lipids: A process for evaluating source inputs to Lake Qinghai [J]. Organic Geochemistry, 2012, 50:36-43. doi: 10.1016/j.orggeochem.2012.06.015

    CrossRef Google Scholar

    [12] Sessions A. Seasonal changes in D/H fractionation ac-companying lipid biosynthesis in Spartina alterniflora [J]. Geochimica et Cosmochimica Acta, 2006, 70: 2153-2162. doi: 10.1016/j.gca.2006.02.003

    CrossRef Google Scholar

    [13] Hou J Z, D′Andrea W J, Huang Y S. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments [J]. Geochimica et Cosmochimica Acta, 2008, 72: 3503-3517. doi: 10.1016/j.gca.2008.04.030

    CrossRef Google Scholar

    [14] Yang H, Huang Y.Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia, northern Idaho, USA [J]. Organic Geochemistry, 2003, 34: 413-423. doi: 10.1016/S0146-6380(02)00212-7

    CrossRef Google Scholar

    [15] Huang Y, Street-Perrott F A, Perrott R A, Metzger P, Eglinton G. Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya [J]. Geochimica et Cosmochimica Acta, 1999, 63: 1383-1404. doi: 10.1016/S0016-7037(99)00074-5

    CrossRef Google Scholar

    [16] Ficken K, Li B, Swain D, Eglinton G. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes [J].Organic Geochemistry, 2000, 31: 745-749. doi: 10.1016/S0146-6380(00)00081-4

    CrossRef Google Scholar

    [17] Simoneit B R T, Sheng G, Chen X, Fu J, Zhang J, Xu Y. Molecular marker study of extractable organic matter in aerosols from urban areas of China [J]. Atmospheric Environment Part A: General Topics,1991,25: 2111-2129. doi: 10.1016/0960-1686(91)90088-O

    CrossRef Google Scholar

    [18] 赵大勇,燕文明,冯景伟,袁守军.磷脂脂肪酸分析在湖泊沉积物微生物生态学研究中的应用[J].化学与生物工程, 2009, 26(12): 17-20. doi: 10.3969/j.issn.1672-5425.2009.12.004

    CrossRef Google Scholar

    [19] Lewis T, Nichols P D, McMeekin T A. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs [J]. Journal of Microbiological Methods, 2000, 43: 107-116. doi: 10.1016/S0167-7012(00)00217-7

    CrossRef Google Scholar

    [20] Huang Y, Shuman B, Wang Y, Webb T. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: A surface sediment test [J]. Journal of Paleolimno-logy, 2004, 31: 363-375. doi: 10.1023/B:JOPL.0000021855.80535.13

    CrossRef Google Scholar

    [21] Meyers P A, Eadie B J. Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan [J]. Organic Geochemistry, 1993, 20: 47-56. doi: 10.1016/0146-6380(93)90080-U

    CrossRef Google Scholar

    [22] 瞿文川,张平中.太湖沉积物中长链脂肪酸甲酯化合物的检出及意义[J].湖泊科学, 1999(11): 245-250.

    Google Scholar

    [23] Diefendorf A F, Freeman K H, Wing S L, Graham H V. Production of n-alkyl lipids in living plants and implications for the geologic past [J]. Geochimica et Cosmochimica Acta, 2011, 75(23): 7422-7485.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(607) PDF downloads(1) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint