Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2014 Vol. 33, No. 2
Article Contents

Yan QIN, Deng-hong WANG, Ting LIANG, Jiang-kang LI, Ke-jun HOU. Characteristics of Rare Earth Elements in the Deep Carbonate Rocks and Their Geological Significance in the Dachang Tin-polymetallic Deposit of Guangxi[J]. Rock and Mineral Analysis, 2014, 33(2): 296-301.
Citation: Yan QIN, Deng-hong WANG, Ting LIANG, Jiang-kang LI, Ke-jun HOU. Characteristics of Rare Earth Elements in the Deep Carbonate Rocks and Their Geological Significance in the Dachang Tin-polymetallic Deposit of Guangxi[J]. Rock and Mineral Analysis, 2014, 33(2): 296-301.

Characteristics of Rare Earth Elements in the Deep Carbonate Rocks and Their Geological Significance in the Dachang Tin-polymetallic Deposit of Guangxi

More Information
  • After years of rapid mining, the shallow resources of the polymetallic tin ore bodies in the Bali area, Dachang, have been depleted. Therefore, deep prospecting is imminent. The REEs of limestone samples in the Middle/Upper Devonian from drill holes of ZK39-1 in the Bali area, Dachang, by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) have been analysed and the process is presented in this paper. The drilling depth is 1580 m, which is one of the world's deepest hole drilling. The results showed that the amount of the REES (∑REEs) is 3.49-261.07 μg/g with a large range. ∑REEs (3.49-45.81 μg/g) of drill core samples at 1100-1580 m are significantly lower than ∑REEs (188.96-242.36 μg/g) at 1100 m above, which is about 10 times the regional background values and far more than common sedimentary limestone. The ratios of light rare earth elements and heavy rare earth elements (LREEs/HREEs) had a range of 2.96-10.04, which meant that there was a high degree of fractionation between light rare earth elements and heavy rare earth elements. δEu values varied between 0.11 and 1.00 and δCe values ranged from 0.53 to 0.99. The Chondrite-normalized distribution pattern chart was ‘right inclination’ LREE enrichment type. Samples from1100-1580 m had a negative Eu anomaly and Ce had a negative anomaly decreasing from top to bottom. The chondrite-normalized pattern chart of 1100-1580 m drill core samples was similar to that of granite from Dachang, indicating that the carbonates were altered by granite magma and that there might be deep magmatic hydrothermal origin or silicon skarn-type polymetallic mineralization near the granite contact zone, known as the ‘third metallogenic spatial’.
  • 加载中
  • [1] 王登红,陈毓川,陈郑辉,刘善宝,许建祥,张家菁,曾载淋,陈富文,李华芹,郭春丽.南岭地区矿产资源形势分析和找矿方向研究[J].地质学报,2007,81(7): 882-890.

    Google Scholar

    [2] 钟铿.广西的泥盆系[M].武汉:中国地质大学出版社,1995:196.

    Google Scholar

    [3] 周棣康,邹志福,刘素英.广西南丹大厂龙头山泥盆纪生物礁[J].石油与天然气地质, 1981,2(3):243-252. doi: 10.11743/ogg19810305

    CrossRef Google Scholar

    [4] 叶绪孙,严云秀.广西大厂生物礁地质意义初探[J].桂林冶金地质学院学报,1981(4):29-37.

    Google Scholar

    [5] 曾允孚,王正瑛,田洪均.广西大厂龙头山泥盆纪生物礁的沉积与成岩作用[J].矿物岩石,1982(3):1-19.

    Google Scholar

    [6] Michard A, Albarde F, Michard G, Minster J F, Charlous J L. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N)[J].Nature,1983,303:795-797. doi: 10.1038/303795a0

    CrossRef Google Scholar

    [7] Mills R, Elderfield H.Rare earth element geochemistry of hydrothermal deposits from the active TAG Mount, 26°N mid-Atlantic Ridge[J].Geochim Cosmochim Acta, 1995,59(17):3511-3524. doi: 10.1016/0016-7037(95)00224-N

    CrossRef Google Scholar

    [8] Klinkhammer G P, Elderfield H, Edmond J M, Mitra A.Geochemical implications of rare earth element patterns in hydrothermal fluid from mid-ocean ridges[J].Geochim Cosmochim Acta,1994,58(23):5105-5113. doi: 10.1016/0016-7037(94)90297-6

    CrossRef Google Scholar

    [9] Piper D Z. Rare earth elements in the sedimentary cycle: A summary[J].Chemical Geology,1974,14(4):285-304. doi: 10.1016/0009-2541(74)90066-7

    CrossRef Google Scholar

    [10] 高长林.陕西南岭碳酸盐岩的稀土元素特征及其古海洋学意义[J].地球化学,1992(4):383-390.

    Google Scholar

    [11] 祝新友,汪东波,卫治国,邱小平,王瑞廷.西成地区碳酸盐岩REE特征及厂坝矿床白云岩成因[J].矿床地质,2005, 24(6):613-620.

    Google Scholar

    [12] 冯兴雷,付修根,谭富文,陈文彬. 北羌塘盆地那底岗日剖面中上侏罗统碳酸盐岩[J].新疆地质,2012,30(2):210-215.

    Google Scholar

    [13] 王登红,李华芹,陈毓川,屈文俊,梁婷,应立娟,韦可利,刘孟宏.桂西北南丹地区大厂超大型锡多金属矿床中发现高稀土元素方解石[J].地质通报,2005,24(2):176-180.

    Google Scholar

    [14] 姜赟赟,来雅文,段太成,石厚礼.长白山地区火山岩中稀土元素特征及赋存状态初探[J].岩矿测试,2013,32(5):825-831.

    Google Scholar

    [15] 丁振举,姚书振,刘丛强,周宗桂,杨明国.东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪[J].岩石学报,2003,19(4):792-798.

    Google Scholar

    [16] 宁洪峰.广西大厂矿田100号与105号矿体成矿研究[D].长沙:中南大学,2003:1-55.

    Google Scholar

    [17] 王东明,于萍,黑欢,刘博胜,袁远,黄惠明,王显彬.广西大厂矿田拉么-羊角尖一带含矿地层元素地球化学特征及其指示意义[J].大地构造与成矿学,2012,36(3):384-391.

    Google Scholar

    [18] 何红蓼,李冰,韩丽荣,孙德忠,王淑贤,李松.封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J].分析试验室,2002,21(5):8-12.

    Google Scholar

    [19] 胡云中.桂北地区地层及锡矿带地球化学[M].北京:北京科学技术出版社,1990:1-190.

    Google Scholar

    [20] 陈德潜,陈刚.实用稀土元素地球化学[M].北京:冶金出版社,1990:223-228.

    Google Scholar

    [21] 王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社,1989:247-260.

    Google Scholar

    [22] 丁振举,刘从强,姚书振,周宗桂.海底热液沉积物稀土元素组成及其意义[J].地质科技情报,2000,19(1):27-35.

    Google Scholar

    [23] Taylor S R, McLemann S M.The Continental Crust: Its Composition and Evolution[M].Blackwell: Oxford Press,1985:312.

    Google Scholar

    [24] 梁婷.广西大厂长坡-铜坑锡多金属矿床成矿机制[D].西安:长安大学,2008:36-38.

    Google Scholar

    [25] 陈毓川,黄民智,徐珏,胡云中,唐绍华,李荫清,孟令库.大厂锡矿地质[M].北京:地质出版社, 1993:361.

    Google Scholar

    [26] 陈毓川,王登红.广西大厂层状花岗质岩石地质、地球化学特征及成因初探[J].地质论评,1996,42(6):523-530.

    Google Scholar

    [27] Allegre C J, Michard G.Introduction to Geochemistry[M].Dordrecht and Boston Press, 1974:1-153.

    Google Scholar

    [28] 王登红,陈毓川,陈文,桑海清,李华芹,路远发,陈开礼,林枝茂.广西南丹大厂超大型锡多金属矿床的成矿时代[J].地质学报,2004,78(1):132-138.

    Google Scholar

    [29] 王登红,陈毓川,王瑞江,黄凡,王永磊.对南岭与找矿有关问题的探讨[J].矿床地质,2013,32(4):854-863.

    Google Scholar

    [30] Wang D H, Chen Y C, Chen W, Sang H Q, Li H Q, Lu Y F, Chen K, Lin Z M. Dating of the Dachang superlarge tin-polymetallic deposit in Guangxi and its implication for the genesis of the No.100 orebody[J]. Acta Geologica Sinica, 2004, 78(2):452-458.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(640) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint