Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2013 Vol. 32, No. 6
Article Contents

Tie-jun LI. Progress in the Application of Oxygen Isotopes in the Study of Petrogenesis[J]. Rock and Mineral Analysis, 2013, 32(6): 841-849.
Citation: Tie-jun LI. Progress in the Application of Oxygen Isotopes in the Study of Petrogenesis[J]. Rock and Mineral Analysis, 2013, 32(6): 841-849.

Progress in the Application of Oxygen Isotopes in the Study of Petrogenesis

  • Since different types of rocks on the earth have different oxygen isotope compositions, they can be used to discuss the origins of various rocks and it has become a powerful tool for studying petrology. For example, determination on whether the granite was derived from metasedimentary or metavolcanic rocks based on its oxygen isotope compositions can be established. For a complex massif, if rocks of different stages have significantly different oxygen isotope compositions, the determination that they have been assimilated by other materials during evolution of magmas, because there should be no evident oxygen isotope fractionation (less than 0.3‰) during chemical differentiation of magmas from mafic to felsic composition can be made. Analytical techniques of oxygen isotope compositions include traditional BrF5, laser BrF5 and ion microprobe and they reflect the development from bulk analysis to microanalysis. Granites (rhyolites) and metamorphic rocks are used as examples to show that understandings of the origins of rocks have improved with the development of oxygen isotope composition analyses. For both granites (rhyolites) and metamorphic rocks, the ion microprobe in-situ analysis of oxygen isotope composition gain new insights into the origins of rocks. Based on traditional BrF5 method, the Suzhou granite was suggested to have two different origins, a low-δ18O origin and a normal δ18O origin. However, δ18O values of magmatic zircons acquired by laser BrF5 analysis are 4.92‰±0.26‰, confirming that the Suzhou granite has a low-δ18O magma origin that was derived from the crust. Similarly, the proposal drawn from traditional BrF5 analysis on whole rock and rock-forming minerals cannot explain the intergranular and intraparticle oxygen isotope variations in the low-δ18O rhyolites from the Yellowstone plateau which can only be gained by the ion microprobe method. Based on laser BrF5 analysis, the metamorphic rocks of the Sulu orogenic belt were considered to have acquired their extremely negative δ18O values during the formation of their protoliths in the Neoproterozoic. However, recent ion microprobe in-situ analysis of oxygen isotope compositions on zircon demonstrates that the Sulu metamorphic rocks acquired their extremely negative δ18O values during the ultrahigh pressure metamorphism in the Triassic. The study of distribution of oxygen isotopic composition in single gain is a new trend in the future.
  • 加载中
  • [1] Taylor H P.The oxygen isotope geochemistry of igneous rocks[J].Contributions to Mineralogy and Petrology, 1968, 19: 1-71. doi: 10.1007/BF00371729

    CrossRef Google Scholar

    [2] Valley J W, Cole D R.Stable isotope geochemistry[J].Reviews in Mineralogy and Geochemistry, 2001, 43: 1-662. doi: 10.2138/gsrmg.43.1.1

    CrossRef Google Scholar

    [3] Jiang N, Chen J Z, Guo J H, Chang G H.In situ zircon U-Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China craton: Evidence for Triassic subduction of continental crust and subsequent metamorphism-related 18O depletion[J]. Lithos, 2012, 142-143: 84-94. doi: 10.1016/j.lithos.2012.02.018

    CrossRef Google Scholar

    [4] Bindeman I N, Ponomareva V V, Bailey J C, Valley J W.Volcanic arc of Kamchatka: A province with high δ18O magma sources and large-scale 18O/16O depletion of the upper crust[J].Geochimica et Cosmochimica Acta, 2004, 68: 841-865. doi: 10.1016/j.gca.2003.07.009

    CrossRef Google Scholar

    [5] Bindeman I N.Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis[J].Reviews in Mineralogy and Geochemistry, 2008, 69: 445-478. doi: 10.2138/rmg.2008.69.12

    CrossRef Google Scholar

    [6] Cherniak D J, Watson E B.Diffusion in Zircon[J].Reviews in Mineralogy and Geochemistry, 2003, 53: 113-143. doi: 10.2113/0530113

    CrossRef Google Scholar

    [7] Clayton R N, Mayeda T K.The use of bromine penta-fluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J].Geochimica et Cosmochimica Acta, 1963, 27: 43-52. doi: 10.1016/0016-7037(63)90071-1

    CrossRef Google Scholar

    [8] 郑淑慧,郑斯成,莫志超.稳定同位素地球化学分析[M].北京:北京大学出版社,1986: 202-221.

    Google Scholar

    [9] 李铁军,张福松,霍卫国.BrF5法氧同位素实验系统中CO2转换器的改进及意义[J].第四纪研究,2005,25(1): 115-116.

    Google Scholar

    [10] 万德芳,李延河.硫酸盐的氧同位素测量方法[J].高校地质学报,2006,12(3): 378-383.

    Google Scholar

    [11] 万德芳,丁悌平.磷酸盐中的氧同位素测定[J].矿物岩石地球化学通报,2001,20(4): 448-450.

    Google Scholar

    [12] 万德芳,丁悌平,李荣华.磷酸盐中氧同位素测量技术研究[J].地质论评,2002,48(Z1): 271-274.

    Google Scholar

    [13] Swann G E A, Leng M J.A review of diatom δ18O in palaeoceanography[J].Quaternary Science Reviews, 2009, 28(5-6): 384-398. doi: 10.1016/j.quascirev.2008.11.002

    CrossRef Google Scholar

    [14] 李铁刚,熊志方.海洋硅藻稳定同位素研究进展[J].海洋与湖沼,2010,41(4): 645-656. doi: 10.11693/hyhz201004027027

    CrossRef Google Scholar

    [15] 李铁军,李洪伟,刘秀金,冯连君.硅藻氧同位素比值测定的分布氟化处理方法[J].分析化学,2012,12: 1897-1901.

    Google Scholar

    [16] 肖益林,郑永飞.激光探针:稳定同位素分析的新式"武器"Ⅰ:发展历史、工作原理和装置构成[J].矿物岩石地球化学通报,1997,16(3): 191-196.

    Google Scholar

    [17] 肖益林,傅斌,郑永飞.激光探针分析在氧同位素地球化学研究中的应用[J].地学前缘,1998,5(1-2): 283-294.

    Google Scholar

    [18] 张泽明,肖益林,Hoefs J,高勇军.超高压变质作用过程中的流体-岩石相互作用-中国大陆科学钻探工程主孔(0-2050 m)岩心的氧同位素证据[J].岩石矿物学杂志,2004,23(4): 289-297.

    Google Scholar

    [19] Valley J W, Chiarenzelli J R, McLell J M.Oxygen isotope geochemistry of zircon[J].Earth and Planetary Science Letters, 1994, 126: 187-206. doi: 10.1016/0012-821X(94)90106-6

    CrossRef Google Scholar

    [20] King E M, Barrie C T, Valley J W.Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek mine, Ontario: Magmatic values are preserved in zircon[J].Geology, 1997, 25: 1079-1082. doi: 10.1130/0091-7613(1997)025<1079:HAOOIR>2.3.CO;2

    CrossRef Google Scholar

    [21] King E M, Valley J W, Davis D W, Edwards G R.Oxygen isotope ratios of Archean plutonic zircons from granite greenstone belts of the Superior Province: Indicator of magmatic source[J].Precambrian Research, 1998, 92: 47-67.

    Google Scholar

    [22] 郑永飞,陈福坤,龚冰,赵子福.大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据[J].科学通报,2003,48(2): 110-119.

    Google Scholar

    [23] 魏春生,郑永飞,赵子福,Valley J W.碾子山A型花岗岩两阶段水-岩作用的氧同位素证据[J].科学通报,2001,46(1): 8-13.

    Google Scholar

    [24] 龚冰,郑永飞,赵子福,赵彦冰.硅酸盐和金属氧化物矿物氧同位素组成的CO2激光氟化分析[J].矿物岩石地球化学通报,2001,20(4): 428-430.

    Google Scholar

    [25] 储雪蕾,日下部实,霍卫国.LA-BrF5-IRMS直连系统的δ17O和δ18O值测定[J].质谱学报,2000,21(3-4): 151-152.

    Google Scholar

    [26] 龚冰,郑永飞.硅酸盐矿物氧同位素组成的激光分析[J].地学前缘,2003,10(2): 279-286.

    Google Scholar

    [27] 丁悌平.激光探针稳定同位素分析技术的现状及发展前景[J].地学前缘,2003,10(2): 263-268.

    Google Scholar

    [28] 陈道公,Deloule E,程昊,夏群科,吴元保.大别-苏鲁变质岩锆石微区氧同位素特征初探:离子探针原位分析[J].科学通报,2003,48(16): 1732-1739. doi: 10.3321/j.issn:0023-074X.2003.16.004

    CrossRef Google Scholar

    [29] 李献华,李武显,王选策,李秋立,刘宇,唐国强.幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位Hf-O同位素制约[J].中国科学:地球科学,2009,39(7): 872-887.

    Google Scholar

    [30] Valley J W.Oxygen Isotopes in Zircon[J].Reviews in Mineralogy and Geochemistry, 2003, 53: 343-385. doi: 10.2113/0530343

    CrossRef Google Scholar

    [31] Friedman I, Lipman P W, Obradovich J D, Gleason J D, Christiansen R L.Meteoric water in magmas[J].Science, 1974, 184: 1069-1072. doi: 10.1126/science.184.4141.1069

    CrossRef Google Scholar

    [32] Hildreth W, Christiansen R L, O'Neil J R.Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau Volcanic Field[J].Journal of Geophysical Research, 1984, 89: 8339-8369. doi: 10.1029/JB089iB10p08339

    CrossRef Google Scholar

    [33] Hildreth W, Halliday A N, Christiansen R L.Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magmas beneath the Yellowstone Plateau Volcanic Field[J].Journal of Petrology, 1991, 32: 63-138. doi: 10.1093/petrology/32.1.63

    CrossRef Google Scholar

    [34] Bindeman I N, Valley J W.The formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA[J].Geology, 2000, 28: 719-722. doi: 10.1130/0091-7613(2000)28<719:FOLRAC>2.0.CO;2

    CrossRef Google Scholar

    [35] Bindeman I N, Valley J W.Low-δ18O rhyolites from Yellowstone: Magmatic evolution based on analyses of zircons and individual phenocrysts[J].Journal of Petrology, 2001, 42: 1491-1517. doi: 10.1093/petrology/42.8.1491

    CrossRef Google Scholar

    [36] Bindeman I N, Fu B, Kita N, Valley J W.Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons[J].Journal of Petrology, 2008, 49: 163-193. doi: 10.1093/petrology/egm075

    CrossRef Google Scholar

    [37] Zheng Y F, Wu Y B, Gong B, Chen R X, Tang J, Zhao Z F.Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite[J].Earth and Planetary Science Letters,2007,256: 196-210. doi: 10.1016/j.epsl.2007.01.026

    CrossRef Google Scholar

    [38] Wang X C, Li Z X, Li X H, Li Q L, Tang G Q, Zhang Q R, Liu Y.Non-glacial origin for low 18O Neoproterozoic magmas in the South China block: Evidence from new in-situ oxygen isotope analyses using SIMS[J].Geology, 2011, 39: 735-738. doi: 10.1130/G31991.1

    CrossRef Google Scholar

    [39] 刘景波,张灵敏,叶凯,苏文,程南飞.大别山北部卢镇关群变质火山岩和共生变质的花岗岩全岩和锆石氧同位素、锆石U-Pb年代学研究[J].岩石学报,2013,29(5): 1511-1524.

    Google Scholar

    [40] 傅斌,魏春生,郑永飞.低δ18O岩浆成因的苏州花岗岩[J].矿物岩石地球化学通报,1996,15(4): 211-215.

    Google Scholar

    [41] 王汝成,沈渭洲,徐士进,徐克勤,赖鸣远.苏州花岗岩的氧同位素研究[J].矿物学报,1998(3): 303-308.

    Google Scholar

    [42] 魏春生,郑永飞,赵子福.苏州A型花岗岩氢氧同位素地球化学研究[J].岩石学报,1999,15(2): 224-236.

    Google Scholar

    [43] 魏春生,郑永飞,赵子福.中国东部A型花岗岩形成时代及物质来源的Nd-Sr-O同位素地球化学制约[J].岩石学报,2001,17(1): 95-111.

    Google Scholar

    [44] Wei C S, Zhao Z F, Spicuzza M J.Zircon oxygen isotopic constraint on the sources of late Mesozoic A-type granites in eastern China[J].Chemical Geology, 2008, 250: 1-15. doi: 10.1016/j.chemgeo.2008.01.004

    CrossRef Google Scholar

    [45] Yui T F, Rumble Ⅲ D, Lo C H.Unusually low δ18O ultra-high-pressure metamorphic rocks from the Sulu Terrain, eastern China[J].Geochimica et Cosmochimica Acta, 1995, 59: 2859-2864. doi: 10.1016/0016-7037(95)00161-R

    CrossRef Google Scholar

    [46] Zheng Y F, Fu B, Gong B, Li S G.Extreme δ18O depletion in eclogite from the Su-Lu terrane in East China[J].European Journal of Mineralogy, 1996, 8: 317-323. doi: 10.1127/ejm/8/2/0317

    CrossRef Google Scholar

    [47] Rumble Ⅲ D, Yui T F.The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China[J].Geochimica et Cosmochimica Acta, 1998, 62: 3307-3321. doi: 10.1016/S0016-7037(98)00239-7

    CrossRef Google Scholar

    [48] Zheng Y F, Fu B, Li Y L, Xiao Y L, Li S G.Oxygen and hydrogen isotope geochemistry of ultrahigh pressure eclogites from the Dabie Mountains and the Sulu terrane[J].Earth and Planetary Science Letter, 1998, 155: 113-129. doi: 10.1016/S0012-821X(97)00203-3

    CrossRef Google Scholar

    [49] Zheng Y F, Wu Y B, Chen F K, Gong B, Zhao Z F.Zircon U-Pb and oxygen isotope evidence for a large scale 18O depletion event in igneous rocks during the Neoproterozoic[J].Geochimica et Cosmochimica Acta, 2004, 68: 4145-4165. doi: 10.1016/j.gca.2004.01.007

    CrossRef Google Scholar

    [50] Tang J, Zheng Y F, Wu Y B, Gong B, Zha X P, Liu X M.Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China[J].Precambrian Research, 2008, 161: 389-418. doi: 10.1016/j.precamres.2007.09.008

    CrossRef Google Scholar

    [51] Yui T F, Rumble Ⅲ D, Chen C H, Lo C H. Stable isotope characteristics of eclogites from the ultra-high-pressure metamorphic terrain, east-central China[J].Chemical Geology, 1997, 137: 135-147. doi: 10.1016/S0009-2541(96)00153-2

    CrossRef Google Scholar

    [52] Zheng Y F, Fu B, Xiao Y L, Li Y L.Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre- and post-UHP metamorphism in the Dabie Mountains[J].Lithos, 1999, 46: 677-693. doi: 10.1016/S0024-4937(98)00090-5

    CrossRef Google Scholar

    [53] Zheng Y F, Wang Z R, Li S G, Zhao Z F.Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer[J].Geochimica et Cosmochimica Acta, 2002, 66: 625-634. doi: 10.1016/S0016-7037(01)00801-8

    CrossRef Google Scholar

    [54] Zheng Y F, Fu B, Gong B, Li L.Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime[J].Earth Science Reviews, 2003, 62: 105-161. doi: 10.1016/S0012-8252(02)00133-2

    CrossRef Google Scholar

    [55] Xiao Y L, Hoefs J, van den Kerkhof A M, Fiebig J, Zheng Y F.Fluid history of UHP metamorphism in Dabie Shan, China: A fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling[J].Contributions to Mineralogy and Petrology, 2000, 139: 1-16. doi: 10.1007/s004100050570

    CrossRef Google Scholar

    [56] Tang J, Zheng Y F, Wu Y B, Gong B, Liu X M.Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen[J].Precambrian Research, 2007, 152: 48-82. doi: 10.1016/j.precamres.2006.09.001

    CrossRef Google Scholar

    [57] Zheng Y F, Zhang S B, Zhao Z F, Wu Y B, Li X, Li Z, Wu F Y.Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust[J].Lithos, 2007, 96: 127-150. doi: 10.1016/j.lithos.2006.10.003

    CrossRef Google Scholar

    [58] Zheng Y F, Gong B, Zhao Z F, Wu Y B, Chen F K.Zircon U-Pb age and O isotope evidence for Neoproterozoic low-18O magmatism during super-continental rifting in South China: Implications for the snowball earth event[J].American Journal of Science, 2008, 308: 484-516. doi: 10.2475/04.2008.04

    CrossRef Google Scholar

    [59] Chen Y X, Zheng Y F, Chen R X, Zhang S B, Li Q L, Dai M N, Chen L.Metamorphic growth and recrystallization of zircons in extremely 18O depleted rocks during eclogite-facies metamorphism: Evidence from U-Pb ages, trace elements, and O-Hf isotopes[J].Geochimica et Cosmochimica Acta, 2011, 75: 4877-4898. doi: 10.1016/j.gca.2011.06.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(2375) PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint