2018 Vol. 51, No. 2
Article Contents

LIU Yingying, XIE Wanli, ZHU Hua, YU Hong, GE Ruihua. Study on Loess Consolidation Collapse Test and Prediction Model in Jingyang District, Shaanxi Province[J]. Northwestern Geology, 2018, 51(2): 227-233.
Citation: LIU Yingying, XIE Wanli, ZHU Hua, YU Hong, GE Ruihua. Study on Loess Consolidation Collapse Test and Prediction Model in Jingyang District, Shaanxi Province[J]. Northwestern Geology, 2018, 51(2): 227-233.

Study on Loess Consolidation Collapse Test and Prediction Model in Jingyang District, Shaanxi Province

  • The study of loess collapsibility problem has great engineering significance and value. Based on natural moisture content, the five sets of undisturbed loess samples with water content of 12%, 15%, 18% and 20% respectively have been collected from the Jingyang area of Shaanxi Province. The single-line method has been used to test the collapsibility of loess in this study area, the compressive properties and collapsibility coefficient of loess under different normal stresses have been obtained, the influence of different water content and different pressure on collapsibility of loess have been studied in this paper. The results show that the coefficient of collapsibility increases with the increase of pressure at lower moisture content. On the contrary, at higher moisture content, the coefficient of collapsibility first increases firstly, and then decreases with increasing pressure. But, the relationship between the coefficient of collapsibility and the moisture content is relatively complex. At the same pressure, the collapsibility coefficient peaks at a certain moisture content. According to the curve characteristics of collapsibility coefficient, moisture content and pressure, a regression equation has been established for collapsibility coefficient and moisture content of loess under different pressures. Finally, based on the least squares support vector machine, the loess density, moisture content and pressure have been used as predictors, thus, a collapsibility prediction model for loess has been established. The results show that this model established by the support vector machine can meet the engineering requirements for predicting the collapsibility of loess.
  • 加载中
  • 谢婉丽,王延寿,马中豪,等. 黄土湿陷机理研究现状及发展趋势[J]. 现代地质,2015,02:397-407.

    Google Scholar

    XIE Wanli, WANG Yanshou,MA Zhonghao,et al.Research Status and Prospect of LoessCollapsibility Mechanism[J]. Geoscience,2015,02:397-407.

    Google Scholar

    李保雄,牛永红,苗天德.兰州马兰黄土的物理力学特性[J]. 岩土力学,2007,28(6):1077-1082.

    Google Scholar

    LI Baoxiong, NIU Yonghong, MIAO Tiande. Physico-mechanical characteristics of Malan loess in Lanzhou region[J].Rock and Soil Mechanics,2007,28(6):1077-1082.

    Google Scholar

    罗浩,伍法权,王定伟,等.赵家岸滑坡地区马兰黄土物理力学特性试验研究[J].工程地质学报,2015, 23(1):44-51.

    Google Scholar

    LUO Hao,WU Faquan,WANG Dingwei,et al. Physicaland Mechanical Propertiesof Malan LoessatZhaojiaan Landslide Area[J].Journal of Engineering Geology, 2015, 23(1):44-51.

    Google Scholar

    曾国红,裘以惠.含水量增加时湿陷性黄土变形特性研究[J].西部探矿工程, 1996, 8:4-5.

    Google Scholar

    曾国红,孟宪寝,裘以惠.关于黄土湿陷起始压力、湿陷起始含水量的探讨[J].太原工业大学学报,1997, 28(4):17-20.

    Google Scholar

    ZENG Guohong, MENG Xianqin, QIU Yihui. The Inquiry into the Initial Pressure[J]. Journal of Taiyuan University of Technology, 1997, 28(4):17-20.

    Google Scholar

    李敏,马登科.黄土湿陷性的影响因素及其综合分析[J].浙江水利水电专科学校学报,2005,17(2):14-17.

    Google Scholar

    LI Min,MA Dengke. Comoprensive Analysis of collapsibiliy of Loess and its Influence Factors[J]. J.Zhejiang Wat.Cons&Hydr.College,2005,17(2):14-17.

    Google Scholar

    张洪萍,包卫星.增减湿黄土压缩与湿陷变形特性的探讨[J].山西建筑,2005,31(5):50-51.

    Google Scholar

    ZHANG Hongping, BAO Weixing. On compression and collapse deformation behaviors of collapsible loess[J]. Shanxi Architecture, 2005,31(5):50-51.

    Google Scholar

    王家鼎.地理学研究中的模糊信息优化处理方法[J].地理与地理信息科学, 1999, 15(1):75-80.

    Google Scholar

    刘悦,王家鼎.黄土湿陷性评价中的模糊信息优化处理方法[J].西北大学学报:自然科学版,2000, 30(1):78-82.

    Google Scholar

    LIU Yue,WANG Jiading. The method of fuzzy information processing of optimizationin the evaluation of loesscollapsibility[J]. Journal of Northwest University(NaturalScience Edition), 2000, 30(1):78-82.

    Google Scholar

    谢婉丽,王家鼎,张新军,等.模糊信息优化方法在黄土湿陷性评价中的应用[J].西北大学学报:自然科学版,2005, 35(1):95-99.

    Google Scholar

    XIE Wanli,WANG Jiading, ZHANG Xinjun, et al. Application in evaluation of loess collapsibility withthe method of fuzzy information optimization processing[J]. Journal of Northwest University(NaturalScience Edition), 2005, 35(1):95-99.

    Google Scholar

    李瑞娥,谷天峰,王娟娟,等.基于模糊信息优化技术的黄土湿陷性评价[J].西安建筑科技大学学报:自然科学版,2009,41(2):213-218.

    Google Scholar

    LI Ruie, GU Tianfeng, WANG Juanjuan, et al. Evaluation of loess collapsibility based on the applicationof fuzzy information optimization technique[J].Journal of Xi'an University of Architecture&Technology(Natural Science Edition), 2009,41(2):213-218.

    Google Scholar

    井彦林,仵彦卿,杨丽娜,等.基于数据挖掘技术的黄土湿陷性评价[J].西北农林科技大学学报:自然科学版,2006, 34(4):130-134.

    Google Scholar

    JING Yanlin, WU Yanqing, YANG Lina, et al. Assessment of loess collapsibility based on da ta mining[J]. Journal of Northwest A&F University(Natural Science Edition),2006, 34(4):130-134.

    Google Scholar

    高凌霞,罗跃纲,杨向军.基于BP人工神经网络的非饱和黄土湿陷系数计算方法[J].大连民族学院学报,2006, 34(5):24-26.

    Google Scholar

    GAOLingxia, LUO Yuegang, YANG Xiangjun. Study on Artificial Neural Network Method for Calculation theCoefficient of Loess Collapsibility[J].Journal of Dalian Nationalities University,2006, 34(5):24-26.

    Google Scholar

    马闫,王家鼎,彭淑君,等.黄土湿陷性与土性指标的关系及其预测模型[J].水土保持通报,2016, 36(1):120-128.

    Google Scholar

    MAYan,WANG Jiading, PENG Shujun, et al. Relationships Between Physicial-mechanical Parameters and Collapsibility of Loess Soil and Its Prediction Model[J]. Bulletin of Soil and Water Conservation, 2016, 36(1):120-128.

    Google Scholar

    井彦林,仵彦卿,林杜军,等. 基于最小二乘支持向量机的黄土湿陷性预测挖掘[J].岩土力学,2010, 31(6):1865-1870.

    Google Scholar

    JING Yanlin,WU Yanqing, LIN Dujun, et al.Prediction of loess collapsibility by using data mining based on least squares support vector machines[J]. Rock and Soil Mechanics,2016, 36(1):120-128.

    Google Scholar

    张炜,张苏民.非饱和黄土室内力学性质试验研究[J].工程勘察,1991,(3):6-10.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2390) PDF downloads(1801) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint