金振民. 我国高温高压实验研究进展和展望[J]. 地球物理学报, 1997, 40(增刊Ⅰ):71-81.
Google Scholar
|
JIN Zhenmin. The progress and perspectives of high-T and high-p experimental study in China[J]. Chinese Journal of Geophysics, 1997, 40(SupplⅠ):71-81.
Google Scholar
|
赵子福,戴立群,郑永飞. 大陆俯冲带两类壳幔相互作用[J]. 中国科学(地球科学), 2015, 45:900-915.
Google Scholar
|
ZHAO Zifu, DAI Liqun, ZHENG Yongfei. Two types of the crust-mantle interaction incontinental subduction zones[J]. Science China:Earth Sciences, 2015, 45:900-915.
Google Scholar
|
王金荣,陈万峰,张旗,等. N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论[J]. 岩石学报, 2017, 33(3):993-1005.
Google Scholar
|
WANG Jinrong, CHEN Wanfeng, ZHANG Qi, et al. Preliminary research on data mining of N-MORB and E-MORB:Disdussion on method of basalt discrimination diagrams and the character of MORB's mantle sourse[J]. Acta Petrologica Sinica,2017, 33(3):993-1005.
Google Scholar
|
夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志,2007,26(1):77-89.
Google Scholar
|
XIA Linqi,XIA Zuchun,XU Xueyi, et al. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica,2007,26(1):77-89.
Google Scholar
|
杨婧,王金荣,张旗,等. 弧后盆地玄武岩(BABB) 数据挖掘:与MORB 及IAB的对比[J]. 地球科学进展,2016,31(1):66-77.
Google Scholar
|
YANG Jing,WANG Jinrong,ZHANG Qi,et al. Back-arc basin basalt(BABB) data mining:Comparison with MORB and IAB[J]. Advances in Earth Science,2016,31(1):66-77.
Google Scholar
|
周春银,金振民,章军锋.地幔转换带:地球深部研究的重要方向[J]. 地学前缘,2010,17(3):90-113.
Google Scholar
|
ZHOU Chunyin,JIN Zhenmin,ZHANG Junfeng. Mantle transition zone:An important field in the studies of Earth's deep interior[J]. Earth Science Frontiers, 2010,17(3):90-113.
Google Scholar
|
杨翠平,金振民,吴耀.地幔转换带中的水及其地球动力学意义[J]. 地学前缘,2010,17(3):114-126.
Google Scholar
|
YANG Cuiping,JIN Zhenmin,WU Yao. Water in the mantle transition zone and its geodynamic implications[J]. Earth Science Frontiers,2010,17(3):114-126.
Google Scholar
|
张鸿翔,徐志方,马英军,等.大陆溢流玄武岩的地球化学特征及起源[J]. 地球科学,2001,26(3):261-268.
Google Scholar
|
ZHANG Hongxiang,XU Zhifang,MA Yingjun,et al. Geochemical features and origin of continental flood basalts[J]. Earth Science,2001,26(3):261-268.
Google Scholar
|
国坤,翟世奎,于增慧,等.板块俯冲对岩浆作用影响的同位素地球化学示踪研究[J].海洋科学,2016,40(6):126-132.
Google Scholar
|
GUO Kun,ZHAI Shihui,YU Zenghui,et al.Advances in isotopic geochemistry tracing for the influence of subduction over magmatism[J].Marine Sciences,2016,40(6):126-132.
Google Scholar
|
夏群科,刘佳,陈欢,等.大陆玄武岩原始水含量的测定及其对源区组分的制约[J].岩石矿物学杂志,2015,34(3):371-381.
Google Scholar
|
XIA Qunke,LIU Jia,CHEN Huan,et al.Estimation of water content of primary magma for continental basalts and itsconstraint on source components[J].Acta Petrologica et Mineralogica,2015,34(3):371-381.
Google Scholar
|
王金荣,陈万峰,张旗,等.MORB数据挖掘:玄武岩判别图反思[J].大地构造与成矿学,2017,41(2):420-431.
Google Scholar
|
WANG Jinrong,CHEN Wanfeng,ZHAN Qi,et al.MORB Data Mining:Reflection of Basalt Discrimination Diagram[J].Geotectonica et Metallogenia,2017,41(2):420-431.
Google Scholar
|
王金荣, 潘振杰, 张旗,等. 大陆板内玄武岩数据挖掘:成分多样性及在判别图中的表现[J]. 岩石学报, 2016, 32(7):1919-1933.
Google Scholar
|
WANG Jinrong,PAN Zhenjie,ZHANG Qi,et al.Intra-continental basalt data mining:The diversity of their constituents and the performance in basalt discrimination diagrams[J].Acta Petrologica Sinica,2016,32(7):1919-1933.
Google Scholar
|
BIRCH F. Elasticity and constitution of the Earth's interior[J]. Journal of Geophysical Research, 1952, 57(2):277-286.
Google Scholar
|
THORKELSON D J. Subduction of diverging plates and the principles of slab window formation[J]. Tectonophysics, 1996, 255:47-63.
Google Scholar
|
HELFFRICH G R, WOOD B J. The Earth's mantle[J]. Nature, 2001, 412:501-507.
Google Scholar
|
WANG, SIMON A W, XU B, et al. Origin of arc-like continental basalts:Implications for deep-Earth fluid cycling and tectonic discrimination[J]. Lithos,2015,http://dx.doi.org/10.1016/j.lithos.2015.12.014.
Google Scholar
|
MARTIN R F, DONNAY G. Hydroxyl in the mantle[J]. American Mineralogist, 1972, 57:554-570.
Google Scholar
|
ANDERSON D L. Theory of Earth[M]. Boston:Blackwell Scientific, 1989:34-44.
Google Scholar
|
RINGWOOD A E. A model for upper mantle[J]. Journal of Geophysical Research, 1962, 67(2):857-867.
Google Scholar
|
RINGWOOD A E. Mineralogy of the mantle[M]. Hurley P M. Advances in Earth Science. Cambridge:Massachusetts Institute of Technology Press, 1966:357-398.
Google Scholar
|
RINGWOOD A E. Compsition and Petrology of the Earth's Mantle[M]. New York:McGraw-Hill,1975.
Google Scholar
|
RINGWOOD A E. Origin of the Earth and Moon[M]. New York:Springer-Verlag, 1979.
Google Scholar
|
SUN S S. Chemical composition and origin of the Earth's primitive mantle[J]. Geochemical et Cosmochimica Acta, 1982, 46(2):179-192.
Google Scholar
|
ANDERSON D L, BASS J D. Mineralogy and composition of the upper mantle[J]. Geophysical Research Letters, 1984, 11(7):637-640.
Google Scholar
|
BASSJ D, ANDERSON D L. Composition of the upper mantle:Geophysical tests of two petrological models[J]. Geophysical Research Letters, 1984, 11(3):229-232.
Google Scholar
|
DUFFY T S, ANDERSON D L. Seismic velocities in mantle minerals and the mineralogy of the upper mantle[J]. Journal of Geophysical Research, 1989, 94(B2):1895-1912.
Google Scholar
|
RINGWOOD A E. Phase transformations and their bearing in the constitution and dynamics of the mantle[J]. Geochimica et Cosmochimca Acta, 1991, 55(8):31-51.
Google Scholar
|
SHEARER P M, FLANAGAN M P. Seismic velocity and density jumps across the 410-and 660-kilometer discontinuities[J]. Sciences,1999, 285:1545-1548.
Google Scholar
|
CAMMARANO F, GOES S, et al. Is a pyrolitic adiabatic mantle compatible with seismic data[J]. Earth and Planetary Science Letters, 2005, 232:227-243.
Google Scholar
|
OHTANI E, SAKAI T. Recent advances in the study of mantle phase transitions[J]. Physics of the Earth and Planetary Interiors,2008,170(3/4):240-247.
Google Scholar
|
SMYTH J R, FROST D J. The effect of water on the 410 km discontinuity:An experimental study[J]. Geophysical Research Letters, 2002,29. Doi:101029/2001G L014418.
Google Scholar
|
INOUE T, WEIDNER D J, et al. Elastic properties of hydrous ringwoodite in Mg2SiO4[J]. Earth and Planetary Sciences Letters,1998, 160(1/2):107-113.
Google Scholar
|
BELL D R, ROSSMAN G R. Water in Earth's mantle:The role of nominally anhydrous minerals[J]. Sciences,1992,255:1391-1397.
Google Scholar
|
INOUE T, YURIMOTO H, et al. Hydrous modified spinel, Mg1.75SiH0.5O4:A new water reservoir in the mantle transition region[J]. Geophysical Research Letters, 1995,22(2):117-120.
Google Scholar
|
ANDERSON D L. New Theory of the Earth[M]. Cambridge:Cambridge University Press, 2007.
Google Scholar
|
GREEN H W, CHEN W, et al. Water is not Recycled into the Deep Mantle in Subducting Lithosphere[A]. American Geophysical Union[C], Fall Meeting, 2008:T13C1966G.
Google Scholar
|
OHTANI E. Water in the mantle[J]. Elements,2005,1(1):25-30.
Google Scholar
|
KOHLSTEDT D L, KEPPLER H, et al. Solubility of water in the α,β and γ phases of (Mg,Fe)2SiO4[J]. Contributions to Mineralogy and Petrology, 1996, 123(4):345-357.
Google Scholar
|
HIRSCHMANN M M. Water,melting and the deep Earth H2O cycle[J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1):629-653.
Google Scholar
|
OHTANI E, TOMA M, et al. Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle[J]. Physics of the Earth and Planetary Interiors, 2001, 124(1/2):105-117.
Google Scholar
|
LITASOV K D, OHTANI E, et al. Wet subduction versus cold subduction[J]. Geophysical Research Letters, 2005, 32:L13312,doi:10.1029/2005GL022921.
Google Scholar
|
HUANG X, XU Y, et al. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite[J]. Natures,2005, 434:746-749.
Google Scholar
|
LI CS, TANG QY, et al. Trace element in discrimination diagrams. Lithos, 2015,232:76-83.
Google Scholar
|
WANG XC, SIMON A W, et al. Continental flood basalts derived from the hydrous mantle transition zone[J]. Nat.Commun.6:7700 doi:10.1038/ncomms8700(2015).
Google Scholar
|
ARNDT N T, CZAMANSKE G K, et al. Mantle and crustal contributions to continental flood vocanism[J]. Tectonphysics,1993, 223:39-52.
Google Scholar
|
DUNCAN A R. The Karoo igneous province-a problem area for inferring tectonic setting from basalt geochemistry[J]. Journal of Volcanology and Geothermal Research, 1987, 32:13-34.
Google Scholar
|
XIA LQ. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139:195-212.
Google Scholar
|
IVANOV A V, LITASOV K D. The deep water cycle and blood basalt volcanism[J]. International Geology Review,2013,56:1-14.
Google Scholar
|
MEREL R, MARZOLI A, et al. Sr, Nd, Pb and Os isotope systematic of CAMP tholeiites from Eastern North America(ENA):evidence of a subduction-enriched,mantle source[J]. Journal of Petrology,2014,55:133-180.
Google Scholar
|
GALLAGHER K, HAWKESWORTH C. Dehydration melting and the generation of continental flood basalts[J]. Natures, 1992, 358:57-59.
Google Scholar
|
FUKAO Y, OBAYASHI M, et al.Stagnant slabs:a review[J]. Annual Review of Earth and Planetary Sciences, 2009, 37:19-46.
Google Scholar
|
IVANOV A, DEMONTEROVA E, et al. Low-Ti melts from the southeastern Siberian Traps Large Igneous Province:evidence for a water-rich mantle source[J]. Journal of Earth System Science,2008, 117:1-21.
Google Scholar
|
PEARSON D G, BRENKER F E, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond[J]. Nature, 2014,507:221-224.
Google Scholar
|
MUNKER C. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand:source constrains and application of refined ICPMS techniques[J]. Chem Geol, 1998, 144(1-2):23-45.
Google Scholar
|
THY P, LESHER C E, et al. Experimental constrains on the skaergaard liquid line of descent[J]. Lithos, 2006, 92:154-180.
Google Scholar
|
HAURI E H, GAETANI G A, et al. Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions[J]. Earth and Planetary Science Letters.,2006, 248:715-734.
Google Scholar
|
DIXON J E, LEIST L, et al. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt[J]. Nature,2002, 420:385-389.
Google Scholar
|
RUSCITTO D M, WALLACE P J, et al. Global variations in H2O/Ce:2 relationships to arc magma geochemistry and volatile fluxes[J]. Geochemistry, Geophysics, Geosystems,2012, 13, Q03025.
Google Scholar
|
PLANK T, KELLEY K A, et al. Why do mafic arc magmas contain~4wt% water on average[J]. Earth and Planetary Science Letters, 2013,364:168-179.
Google Scholar
|
CIVIERO C, HAMMOND J O S, et al. Multiple mantle upwellings in the transition zone beneath the northern EastAfrican Rift system from relative P-wave travel-time tomography[J].Geochemistry,Geophysics,Geosystems,2015,16:2949-2968.
Google Scholar
|
FROMMT, PLANERT L, et al. South Atlantic opening:a plume-induced breakup[J]. Geology,http//dx.doi.org/10.1130/g36936.1.
Google Scholar
|
LI Z X, ZHONG S. Supercontinent-superplume coupling, true polar wander and plume mobility:Plate dominance in whole-mantle tectonics[J]. Phys, Earth Planet, Inter, 2009, 176:143-156.
Google Scholar
|
LI Z X et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160:179-210.
Google Scholar
|
NAKAKUKI T, TAGAWA M, et al. Dynamical mechanisms controlling formation and avalanche of a stagnant slab[J]. Earth Planet, 2010, 183:309-320.
Google Scholar
|
WINDLEY B F, MARUYAMA S, et al. Delamination/thinning of sub-continental lithospheric mantle under Eastern China:the role of water and multiple subduction[J]. American Journal of Science,2010, 310:1250-1293.
Google Scholar
|
SAKAKMAKI T et al. Ponded melt at the boundary between the lithosphere and asthenosphere[J]. Nature Geoscience, 2013, 6:1041-1044.
Google Scholar
|
ERNST R E, BUCHAN K L, et al. Frontiers in large igneous province research[J]. Lithos, 2005,79:271-297.
Google Scholar
|
HAWKESWORTH C, TURNER S, et al. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range[J]. Geophysical Research, 1995, 100(10):271-286.
Google Scholar
|
SAUNDERS A D, STOREY M, et al. Consequences of plume-lithossphere interaction[A]. London, 1992,68:41-60.
Google Scholar
|
WEAVER B L. The origin of ocean island basalt end-member compositions:trace element and isotopic constraints[J]. Earth Planet Letters, 1991, 104:381-397.
Google Scholar
|
JORDAN F, BERTRAND H, et al. Major and Trace element and Sr,Nd,Hf, and Pb isotope compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe:lithosphere vs mantle plume contuibution[J]. Journal of Petrology, 2007, 48:1043-1077.
Google Scholar
|
PUFFER J H. Contrasting high field strength elements contents of continental flood basalts from plume versus reactivated-arc sources[J]. Geology, 2001, 29:675-678.
Google Scholar
|
PANG C J, WANG X C, et al. Late Carboniferous N-MORB-type basalts in central Inner Mongolia, China:Products of hydrous melting in an intraplate setting[J]. Lithos, 2016,http://dx.doi.org/10.1016/j.lithos.2016.05.005.
Google Scholar
|
TURNER S, FODEN J, et al. Rates and peocesses of potassic magma evolution beneath Sangeang Apivolcano, east Sunda arc, Indonesia[J]. Petrol, 2003, 44(3):491-515.
Google Scholar
|
KEPPLER H. Constraints from partitioning experiments on the composition of subduction-zone fluids[J]. Nature, 1996, 380:237-240.
Google Scholar
|
PEARCE J, NORRY M. Petrogenetic implications of Ti,Zr,Y,and Nb variations in volcanic rocks[J]. Mineralogy and Petrology, 1979, 69:33-47.
Google Scholar
|
WOOD B J. The effect of H2O on the 410-kilometer seismic discontinuity[J]. Science,1995,268:74-76.
Google Scholar
|
KUBO T, OHTANI E, et al. Effects of water on the α-β transformation kinetics in San Carlos olivine[J]. Science,1998,281:85-87.
Google Scholar
|