2018 Vol. 51, No. 2
Article Contents

LI Chengze, WANG Jinrong. Dynamics Mechanism of Deep-Earth Water Cycling and Its Research Progress[J]. Northwestern Geology, 2018, 51(2): 209-219.
Citation: LI Chengze, WANG Jinrong. Dynamics Mechanism of Deep-Earth Water Cycling and Its Research Progress[J]. Northwestern Geology, 2018, 51(2): 209-219.

Dynamics Mechanism of Deep-Earth Water Cycling and Its Research Progress

  • Mantle transition zone (MTZ) is the transitional region between the upper and lower mantle, the geological processes occurred within its interior have a profound influence on the related geodynamic processes. The subduction zone is one of the strongest crust-mantle interaction regions, and the widespread continental flood basalt (CFB) on the Earth's surface is one of most important objects to study crust-mantle cyclic dynamics. Mantle transition zone has a large amount of water, which is stored within the nominal anhydrous minerals (NAMs). The fluids were caused by the dehydration of residual slab in the subdution process, and these fluids replaced the continental lithosphere, producing the intra-continental basalts with arc-like signature and leading to the misidentification between continental basalt and island-arc basalt. The traditional discrimination diagrams of basalts are not validity distinguishing two types of basalts (CFB and IAB), and it can be further divided by sensitive elements, thus the tectonic discrimination diagrams need to be used. Newly proposed water-filtering model of mantle transition zone links the deep-Earth fluid cycling, large-scale intra-continental basaltic magmatism, and supercontinent cycles into a system. This model reveals that the assemblage of supercontinent could potentially lead to the accumulation of water-bearing oceanic plates in the mantle transition zone and may also change the mode of mantle convection.
  • 加载中
  • 金振民. 我国高温高压实验研究进展和展望[J]. 地球物理学报, 1997, 40(增刊Ⅰ):71-81.

    Google Scholar

    JIN Zhenmin. The progress and perspectives of high-T and high-p experimental study in China[J]. Chinese Journal of Geophysics, 1997, 40(SupplⅠ):71-81.

    Google Scholar

    赵子福,戴立群,郑永飞. 大陆俯冲带两类壳幔相互作用[J]. 中国科学(地球科学), 2015, 45:900-915.

    Google Scholar

    ZHAO Zifu, DAI Liqun, ZHENG Yongfei. Two types of the crust-mantle interaction incontinental subduction zones[J]. Science China:Earth Sciences, 2015, 45:900-915.

    Google Scholar

    王金荣,陈万峰,张旗,等. N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论[J]. 岩石学报, 2017, 33(3):993-1005.

    Google Scholar

    WANG Jinrong, CHEN Wanfeng, ZHANG Qi, et al. Preliminary research on data mining of N-MORB and E-MORB:Disdussion on method of basalt discrimination diagrams and the character of MORB's mantle sourse[J]. Acta Petrologica Sinica,2017, 33(3):993-1005.

    Google Scholar

    夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志,2007,26(1):77-89.

    Google Scholar

    XIA Linqi,XIA Zuchun,XU Xueyi, et al. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica,2007,26(1):77-89.

    Google Scholar

    杨婧,王金荣,张旗,等. 弧后盆地玄武岩(BABB) 数据挖掘:与MORB 及IAB的对比[J]. 地球科学进展,2016,31(1):66-77.

    Google Scholar

    YANG Jing,WANG Jinrong,ZHANG Qi,et al. Back-arc basin basalt(BABB) data mining:Comparison with MORB and IAB[J]. Advances in Earth Science,2016,31(1):66-77.

    Google Scholar

    周春银,金振民,章军锋.地幔转换带:地球深部研究的重要方向[J]. 地学前缘,2010,17(3):90-113.

    Google Scholar

    ZHOU Chunyin,JIN Zhenmin,ZHANG Junfeng. Mantle transition zone:An important field in the studies of Earth's deep interior[J]. Earth Science Frontiers, 2010,17(3):90-113.

    Google Scholar

    杨翠平,金振民,吴耀.地幔转换带中的水及其地球动力学意义[J]. 地学前缘,2010,17(3):114-126.

    Google Scholar

    YANG Cuiping,JIN Zhenmin,WU Yao. Water in the mantle transition zone and its geodynamic implications[J]. Earth Science Frontiers,2010,17(3):114-126.

    Google Scholar

    张鸿翔,徐志方,马英军,等.大陆溢流玄武岩的地球化学特征及起源[J]. 地球科学,2001,26(3):261-268.

    Google Scholar

    ZHANG Hongxiang,XU Zhifang,MA Yingjun,et al. Geochemical features and origin of continental flood basalts[J]. Earth Science,2001,26(3):261-268.

    Google Scholar

    国坤,翟世奎,于增慧,等.板块俯冲对岩浆作用影响的同位素地球化学示踪研究[J].海洋科学,2016,40(6):126-132.

    Google Scholar

    GUO Kun,ZHAI Shihui,YU Zenghui,et al.Advances in isotopic geochemistry tracing for the influence of subduction over magmatism[J].Marine Sciences,2016,40(6):126-132.

    Google Scholar

    夏群科,刘佳,陈欢,等.大陆玄武岩原始水含量的测定及其对源区组分的制约[J].岩石矿物学杂志,2015,34(3):371-381.

    Google Scholar

    XIA Qunke,LIU Jia,CHEN Huan,et al.Estimation of water content of primary magma for continental basalts and itsconstraint on source components[J].Acta Petrologica et Mineralogica,2015,34(3):371-381.

    Google Scholar

    王金荣,陈万峰,张旗,等.MORB数据挖掘:玄武岩判别图反思[J].大地构造与成矿学,2017,41(2):420-431.

    Google Scholar

    WANG Jinrong,CHEN Wanfeng,ZHAN Qi,et al.MORB Data Mining:Reflection of Basalt Discrimination Diagram[J].Geotectonica et Metallogenia,2017,41(2):420-431.

    Google Scholar

    王金荣, 潘振杰, 张旗,等. 大陆板内玄武岩数据挖掘:成分多样性及在判别图中的表现[J]. 岩石学报, 2016, 32(7):1919-1933.

    Google Scholar

    WANG Jinrong,PAN Zhenjie,ZHANG Qi,et al.Intra-continental basalt data mining:The diversity of their constituents and the performance in basalt discrimination diagrams[J].Acta Petrologica Sinica,2016,32(7):1919-1933.

    Google Scholar

    BIRCH F. Elasticity and constitution of the Earth's interior[J]. Journal of Geophysical Research, 1952, 57(2):277-286.

    Google Scholar

    THORKELSON D J. Subduction of diverging plates and the principles of slab window formation[J]. Tectonophysics, 1996, 255:47-63.

    Google Scholar

    HELFFRICH G R, WOOD B J. The Earth's mantle[J]. Nature, 2001, 412:501-507.

    Google Scholar

    WANG, SIMON A W, XU B, et al. Origin of arc-like continental basalts:Implications for deep-Earth fluid cycling and tectonic discrimination[J]. Lithos,2015,http://dx.doi.org/10.1016/j.lithos.2015.12.014.

    Google Scholar

    MARTIN R F, DONNAY G. Hydroxyl in the mantle[J]. American Mineralogist, 1972, 57:554-570.

    Google Scholar

    ANDERSON D L. Theory of Earth[M]. Boston:Blackwell Scientific, 1989:34-44.

    Google Scholar

    RINGWOOD A E. A model for upper mantle[J]. Journal of Geophysical Research, 1962, 67(2):857-867.

    Google Scholar

    RINGWOOD A E. Mineralogy of the mantle[M]. Hurley P M. Advances in Earth Science. Cambridge:Massachusetts Institute of Technology Press, 1966:357-398.

    Google Scholar

    RINGWOOD A E. Compsition and Petrology of the Earth's Mantle[M]. New York:McGraw-Hill,1975.

    Google Scholar

    RINGWOOD A E. Origin of the Earth and Moon[M]. New York:Springer-Verlag, 1979.

    Google Scholar

    SUN S S. Chemical composition and origin of the Earth's primitive mantle[J]. Geochemical et Cosmochimica Acta, 1982, 46(2):179-192.

    Google Scholar

    ANDERSON D L, BASS J D. Mineralogy and composition of the upper mantle[J]. Geophysical Research Letters, 1984, 11(7):637-640.

    Google Scholar

    BASSJ D, ANDERSON D L. Composition of the upper mantle:Geophysical tests of two petrological models[J]. Geophysical Research Letters, 1984, 11(3):229-232.

    Google Scholar

    DUFFY T S, ANDERSON D L. Seismic velocities in mantle minerals and the mineralogy of the upper mantle[J]. Journal of Geophysical Research, 1989, 94(B2):1895-1912.

    Google Scholar

    RINGWOOD A E. Phase transformations and their bearing in the constitution and dynamics of the mantle[J]. Geochimica et Cosmochimca Acta, 1991, 55(8):31-51.

    Google Scholar

    SHEARER P M, FLANAGAN M P. Seismic velocity and density jumps across the 410-and 660-kilometer discontinuities[J]. Sciences,1999, 285:1545-1548.

    Google Scholar

    CAMMARANO F, GOES S, et al. Is a pyrolitic adiabatic mantle compatible with seismic data[J]. Earth and Planetary Science Letters, 2005, 232:227-243.

    Google Scholar

    OHTANI E, SAKAI T. Recent advances in the study of mantle phase transitions[J]. Physics of the Earth and Planetary Interiors,2008,170(3/4):240-247.

    Google Scholar

    SMYTH J R, FROST D J. The effect of water on the 410 km discontinuity:An experimental study[J]. Geophysical Research Letters, 2002,29. Doi:101029/2001G L014418.

    Google Scholar

    INOUE T, WEIDNER D J, et al. Elastic properties of hydrous ringwoodite in Mg2SiO4[J]. Earth and Planetary Sciences Letters,1998, 160(1/2):107-113.

    Google Scholar

    BELL D R, ROSSMAN G R. Water in Earth's mantle:The role of nominally anhydrous minerals[J]. Sciences,1992,255:1391-1397.

    Google Scholar

    INOUE T, YURIMOTO H, et al. Hydrous modified spinel, Mg1.75SiH0.5O4:A new water reservoir in the mantle transition region[J]. Geophysical Research Letters, 1995,22(2):117-120.

    Google Scholar

    ANDERSON D L. New Theory of the Earth[M]. Cambridge:Cambridge University Press, 2007.

    Google Scholar

    GREEN H W, CHEN W, et al. Water is not Recycled into the Deep Mantle in Subducting Lithosphere[A]. American Geophysical Union[C], Fall Meeting, 2008:T13C1966G.

    Google Scholar

    OHTANI E. Water in the mantle[J]. Elements,2005,1(1):25-30.

    Google Scholar

    KOHLSTEDT D L, KEPPLER H, et al. Solubility of water in the α,β and γ phases of (Mg,Fe)2SiO4[J]. Contributions to Mineralogy and Petrology, 1996, 123(4):345-357.

    Google Scholar

    HIRSCHMANN M M. Water,melting and the deep Earth H2O cycle[J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1):629-653.

    Google Scholar

    OHTANI E, TOMA M, et al. Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle[J]. Physics of the Earth and Planetary Interiors, 2001, 124(1/2):105-117.

    Google Scholar

    LITASOV K D, OHTANI E, et al. Wet subduction versus cold subduction[J]. Geophysical Research Letters, 2005, 32:L13312,doi:10.1029/2005GL022921.

    Google Scholar

    HUANG X, XU Y, et al. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite[J]. Natures,2005, 434:746-749.

    Google Scholar

    LI CS, TANG QY, et al. Trace element in discrimination diagrams. Lithos, 2015,232:76-83.

    Google Scholar

    WANG XC, SIMON A W, et al. Continental flood basalts derived from the hydrous mantle transition zone[J]. Nat.Commun.6:7700 doi:10.1038/ncomms8700(2015).

    Google Scholar

    ARNDT N T, CZAMANSKE G K, et al. Mantle and crustal contributions to continental flood vocanism[J]. Tectonphysics,1993, 223:39-52.

    Google Scholar

    DUNCAN A R. The Karoo igneous province-a problem area for inferring tectonic setting from basalt geochemistry[J]. Journal of Volcanology and Geothermal Research, 1987, 32:13-34.

    Google Scholar

    XIA LQ. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139:195-212.

    Google Scholar

    IVANOV A V, LITASOV K D. The deep water cycle and blood basalt volcanism[J]. International Geology Review,2013,56:1-14.

    Google Scholar

    MEREL R, MARZOLI A, et al. Sr, Nd, Pb and Os isotope systematic of CAMP tholeiites from Eastern North America(ENA):evidence of a subduction-enriched,mantle source[J]. Journal of Petrology,2014,55:133-180.

    Google Scholar

    GALLAGHER K, HAWKESWORTH C. Dehydration melting and the generation of continental flood basalts[J]. Natures, 1992, 358:57-59.

    Google Scholar

    FUKAO Y, OBAYASHI M, et al.Stagnant slabs:a review[J]. Annual Review of Earth and Planetary Sciences, 2009, 37:19-46.

    Google Scholar

    IVANOV A, DEMONTEROVA E, et al. Low-Ti melts from the southeastern Siberian Traps Large Igneous Province:evidence for a water-rich mantle source[J]. Journal of Earth System Science,2008, 117:1-21.

    Google Scholar

    PEARSON D G, BRENKER F E, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond[J]. Nature, 2014,507:221-224.

    Google Scholar

    MUNKER C. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand:source constrains and application of refined ICPMS techniques[J]. Chem Geol, 1998, 144(1-2):23-45.

    Google Scholar

    THY P, LESHER C E, et al. Experimental constrains on the skaergaard liquid line of descent[J]. Lithos, 2006, 92:154-180.

    Google Scholar

    HAURI E H, GAETANI G A, et al. Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions[J]. Earth and Planetary Science Letters.,2006, 248:715-734.

    Google Scholar

    DIXON J E, LEIST L, et al. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt[J]. Nature,2002, 420:385-389.

    Google Scholar

    RUSCITTO D M, WALLACE P J, et al. Global variations in H2O/Ce:2 relationships to arc magma geochemistry and volatile fluxes[J]. Geochemistry, Geophysics, Geosystems,2012, 13, Q03025.

    Google Scholar

    PLANK T, KELLEY K A, et al. Why do mafic arc magmas contain~4wt% water on average[J]. Earth and Planetary Science Letters, 2013,364:168-179.

    Google Scholar

    CIVIERO C, HAMMOND J O S, et al. Multiple mantle upwellings in the transition zone beneath the northern EastAfrican Rift system from relative P-wave travel-time tomography[J].Geochemistry,Geophysics,Geosystems,2015,16:2949-2968.

    Google Scholar

    FROMMT, PLANERT L, et al. South Atlantic opening:a plume-induced breakup[J]. Geology,http//dx.doi.org/10.1130/g36936.1.

    Google Scholar

    LI Z X, ZHONG S. Supercontinent-superplume coupling, true polar wander and plume mobility:Plate dominance in whole-mantle tectonics[J]. Phys, Earth Planet, Inter, 2009, 176:143-156.

    Google Scholar

    LI Z X et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160:179-210.

    Google Scholar

    NAKAKUKI T, TAGAWA M, et al. Dynamical mechanisms controlling formation and avalanche of a stagnant slab[J]. Earth Planet, 2010, 183:309-320.

    Google Scholar

    WINDLEY B F, MARUYAMA S, et al. Delamination/thinning of sub-continental lithospheric mantle under Eastern China:the role of water and multiple subduction[J]. American Journal of Science,2010, 310:1250-1293.

    Google Scholar

    SAKAKMAKI T et al. Ponded melt at the boundary between the lithosphere and asthenosphere[J]. Nature Geoscience, 2013, 6:1041-1044.

    Google Scholar

    ERNST R E, BUCHAN K L, et al. Frontiers in large igneous province research[J]. Lithos, 2005,79:271-297.

    Google Scholar

    HAWKESWORTH C, TURNER S, et al. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range[J]. Geophysical Research, 1995, 100(10):271-286.

    Google Scholar

    SAUNDERS A D, STOREY M, et al. Consequences of plume-lithossphere interaction[A]. London, 1992,68:41-60.

    Google Scholar

    WEAVER B L. The origin of ocean island basalt end-member compositions:trace element and isotopic constraints[J]. Earth Planet Letters, 1991, 104:381-397.

    Google Scholar

    JORDAN F, BERTRAND H, et al. Major and Trace element and Sr,Nd,Hf, and Pb isotope compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe:lithosphere vs mantle plume contuibution[J]. Journal of Petrology, 2007, 48:1043-1077.

    Google Scholar

    PUFFER J H. Contrasting high field strength elements contents of continental flood basalts from plume versus reactivated-arc sources[J]. Geology, 2001, 29:675-678.

    Google Scholar

    PANG C J, WANG X C, et al. Late Carboniferous N-MORB-type basalts in central Inner Mongolia, China:Products of hydrous melting in an intraplate setting[J]. Lithos, 2016,http://dx.doi.org/10.1016/j.lithos.2016.05.005.

    Google Scholar

    TURNER S, FODEN J, et al. Rates and peocesses of potassic magma evolution beneath Sangeang Apivolcano, east Sunda arc, Indonesia[J]. Petrol, 2003, 44(3):491-515.

    Google Scholar

    KEPPLER H. Constraints from partitioning experiments on the composition of subduction-zone fluids[J]. Nature, 1996, 380:237-240.

    Google Scholar

    PEARCE J, NORRY M. Petrogenetic implications of Ti,Zr,Y,and Nb variations in volcanic rocks[J]. Mineralogy and Petrology, 1979, 69:33-47.

    Google Scholar

    WOOD B J. The effect of H2O on the 410-kilometer seismic discontinuity[J]. Science,1995,268:74-76.

    Google Scholar

    KUBO T, OHTANI E, et al. Effects of water on the α-β transformation kinetics in San Carlos olivine[J]. Science,1998,281:85-87.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2666) PDF downloads(1666) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint