2018 Vol. 51, No. 2
Article Contents

FAN Tingbin, LI Hao, XU Xingwang, DONG Lianhui. Research Status and Progress of Nonsulfide Zinc-Lead Deposit[J]. Northwestern Geology, 2018, 51(2): 147-159.
Citation: FAN Tingbin, LI Hao, XU Xingwang, DONG Lianhui. Research Status and Progress of Nonsulfide Zinc-Lead Deposit[J]. Northwestern Geology, 2018, 51(2): 147-159.

Research Status and Progress of Nonsulfide Zinc-Lead Deposit

  • The nonsulfide zinc-lead deposits are composed of zinc and lead "oxides". Nonsulfide zinc-lead deposits are classified as supergene and hypogene deposits. The supergene deposits are primarily formed by the supergene oxidation, which are mainly composed of smithsonite, hemimorphite and cerussite. These supergene nonsulfide deposits consist of three subtypes, as as direct-replacement deposits, wall-rock replacement deposit, and residual and karst-fill deposit. The hypogene deposits are mainly formed by the hydrothermal solutions which consist dominantly of willemite, smithsonite and cerussite. These hypogene deposits are subdivided into structurally controlled deposit and stratiform deposit. The hypogene deposits show distinct carbon and oxygen compositions with the supergene deposits. In this paper, the characteristics and genesis of the nonsulfide deposits have been presented, and the research progress on the Huoshaoyun zinc-lead deposit has been introduced. The Huoshaoyun deposit is the largest zinc-lead deposit in China, with the zinc-ead metal reserve of more than 17 million tonnes. This deposit is primarily composed of smithsonite, cerussite, galena and sphalerite. The latest research show that this deposit was experienced two ore-forming stages:an early and primary zinc-lead carbonate ore-forming stage, and a late zinc-lead sulfide ore-forming stage. The geological characteristics and stable isotope features indicate that the Huoshaoyun deposit is a stratiform (exhalative) hypogene nonsulfide zinc-lead deposit.
  • 加载中
  • 董连慧,冯京,刘德权, 等. 新疆成矿单元划分方案研究[J]. 新疆地质, 2010, 28(1):1-15.

    Google Scholar

    DONG LH, FENG J, LIU DQ, et al. Research for classification of metallogenic unit of Xinjiang[J]. Xinjiang Geology, 2010, 28(1):1-15.

    Google Scholar

    董连慧,徐兴旺,范廷宾, 等. 西昆仑火烧云超大型喷流-沉积成因碳酸盐型Pb-Zn矿的发现及区域成矿学意义[J]. 新疆地质, 2015, 33(1):41-50.

    Google Scholar

    DONG LH, XU XW, FAN TB, et al. Discovery of the Huoshaoyun super-large exhalative-sedimentary carbonate Pb-Zn deposit in the Western Kunlun Area and its great significance for regional metallogeny[J]. Xinjiang Geology, 2015, 33(1):41-50.

    Google Scholar

    潘裕生.西昆仑构造特征与演化[J]. 地质科学, 1990, 25(2):224-232.

    Google Scholar

    PANY S. Tectonic features and evolution of the western Kunlun Mountain Region[J]. Scientia Geologica Sinica, 1990, 25(2):224-232.

    Google Scholar

    王炬川, 崔建堂, 罗乾周, 等. 喀喇昆仑南部侏罗系龙山组沉积环境分析及构造环境初探[J]. 陕西地质, 2004, 22(1):17-23.

    Google Scholar

    WANG JC, CUI JT, LUO QZ, et al. Analysis of the sedimentary environment and discussion of the structural setting of the Jurassic Longshan formation in the southern Kunlun of Gela[J]. Shaanxi Geology, 2004, 22(1):17-23.

    Google Scholar

    徐仕琪, 冯京, 田江涛, 等. 西昆仑落石沟一带铅锌矿成矿特征及区域预测[J].吉林大学学报(地球科学版), 2013, 43(4):1190-1199.

    Google Scholar

    XU SQ, FENG J, TIAN JT, et al. Metallogenic rules and regional prediction of lead-zinc deposits in Luoshigou of West Kunlun[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(4):1190-1199.

    Google Scholar

    徐仕琪, 冯京, 田江涛, 等.西昆仑落石沟一带铅锌矿成矿规律与找矿前景[J]. 新疆地质, 2014, 31(1):70-75.

    Google Scholar

    XU SQ, FENG J, TIAN JT, et al. Metallogenic rules and prospecting potential of lead-zinc deposits in Luoshigou of West Kunlun[J]. Xinjiang Geology, 2014, 31(1):70-75.

    Google Scholar

    杨永强,李丽.非硫化物型锌矿床的地质特征和成因机制[J]. 世界地质,2010,(01):56-59.

    Google Scholar

    YANGY Q, LI L. Geological characteristics and formation mechanism of nonsulfide zinc deposits[J]. Global Geology, 2010, (01):56-59.

    Google Scholar

    AL GANADI, LAGNY P, LESCUYER J L, et al. Jabali, a Zn-Pb-(Ag) carbonate-hosted deposit associated with Late Jurassic rifting in Yemen[J]. Mineralium Deposita, 1994, 29(1):44-56.

    Google Scholar

    BAGUETTE A. Les gisements calaminaires de Thasos[J]. Annales Géologiques des Pays Hélleniques, Série 1, Tom Ⅱ, 1947, 143-183.

    Google Scholar

    BALASSONE G, ROSSI M, BONI M, et al. Mineralogical and geochemical characterization of nonsulfide Zn-Pb mineralization at Silvermines and Galmoy (Irish Midlands)[J]. Ore Geology Reviews, 2008, 33(2):168-186.

    Google Scholar

    BEATY D W, LANDIS G P, THOMPSON T B, et al. Carbonate-hosted sulfide deposits of the Central Colorado mineral belt[M]. Littleton:Economic Geology Monograph, 1990, 7:424.

    Google Scholar

    BOLFAM J. Contribution a l'étude du gisement de Hammam N'Baïls (Province de Constantine, Algérie)[J]. Compte Rendu du Congrès des Sociétés Savantes,Section des Sciences, 1953:171-182.

    Google Scholar

    BONI M, BALASSONE G, ARSENEAU V, et al. The nonsulfide zinc deposit at Accha (Southern Peru):geological and mineralogical characterization[J]. Economic Geology, 2009, 104(2):267-289.

    Google Scholar

    BONI M, GILG H A, BALASSONE G, et al. Hypogene Zn carbonate ores in the Angouran deposit, NW Iran[J]. Mineralium Deposita, 2007, 42(8):799-820.

    Google Scholar

    BONI M, GILG H A., AVERSA G, et al. The "Calamine" of SW Sardinia (Italy):geology, mineralogy and stable isotope geochemistry of a supergene Zn-mineralization[J]. Economic Geology, 2003, 98:731-748.

    Google Scholar

    BONI M, LARGE D. Nonsulfide zinc mineralization in Europe:An overview[J]. Economic Geology, 2003, 98(4):715-729.

    Google Scholar

    BONI M, MONDILLO N. The "calamines" and the "others":The great family of supergene nonsulfide zinc ores[J]. Ore Geology Reviews, 2015, 67:208-233.

    Google Scholar

    BONIM. A new ("old") type of Zn ore resource:The "calamine" of SW Sardinia (Italy)[A]//Geological Society of America Abstracts with Programs[C], 2001, 33:A-336.

    Google Scholar

    BORG G, KÄRNER K, BUXTON M, et al. Geology of the Skorpion supergene zinc deposit, southern Namibia[J]. Economic Geology, 2003, 98(4):749-771.

    Google Scholar

    BORG G. A Review of Supergene Nonsulphide Zinc (SNSZ) Deposits-the 2014 Update[A]. Archibald S M and Piercey S J, eds. In book:Current Perspectives on Zinc Deposits, Ireland[C]:Irish Association for Economic Geology. 2015:123-147.

    Google Scholar

    BRUGGER J, MCPHAIL D C, WALLACE M, et al. Formation of willemite in hydrothermal environments[J]. Economic Geology, 2003, 98(4):819-835.

    Google Scholar

    BUSH J B, COOK D R. The Chief Oxide-Burgin area discoveries, East Tintic District, Utah; a case history; Part Ⅱ, Bear Creek Mining Company studies and exploration[J]. Economic Geology, 1960, 55(7):1507-1540.

    Google Scholar

    CAIRNCROSS B. The Otavi Mountain Land Cu-Pb-Zn-V deposits[J]. Mineralogical Record, 1997, 28:109-130, 157.

    Google Scholar

    CERLING T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71(2):229-240.

    Google Scholar

    CHAPPLE K. The Mehdiabad zinc deposit-a Tethyan giant[J]. Mineral Exploration and Sustainable Development. Millpress, Rotterdam, 2003:1149-1152.

    Google Scholar

    COPPOLA V, BONI M, GILGH A, et al. The "calamine" nonsulfide Zn-Pb deposits of Belgium:petrographical, mineralogical and geochemical characterization[J]. Ore Geology Reviews, 2008, 33(2):187-210.

    Google Scholar

    DALIRAN F, PRIDE K, WALTHER J, et al. The Angouran Zn (Pb) deposit, NW Iran:evidence for a two stage, hypogene zinc sulfide-zinc carbonate mineralization[J]. Ore Geology Reviews, 2013, 53:373-402.

    Google Scholar

    EL SAMANI Y, TOURAY J C, POUITG, et al. La minéralisation en Zn-Cu-Mn-Ba d'Abu Samar et les indices de la plaine d'Allalka-leib (Soudan)[J].des accumulations métallifères métamorphisées d'origine exhalative-sédimentaire:Chronique de la Recherche Minière, 1986, 483:3-18.

    Google Scholar

    FEDIUK F, KUSNÍR I. Groupe de gétes polymétalliques de Cho Dien en Républic Démocratique du Vietnam[J]. Acta Universitas Carolinae-Geologica, 1967, 1:29-58.

    Google Scholar

    GILG H A, ALLEN C, BALASSONE G, et al. The 3-stage evolution of the Angouran Zn "oxide"-sulfide deposit, Iran[J]. Mineral Exploration and Sustainable Development. Millpress, Rotterdam, 2003a:77-80.

    Google Scholar

    GILG H A, BONI M, HOCHLEITNERR, et al. Stable isotope geochemistry of carbonate minerals in supergene oxidation zones of Zn-Pb deposits[J]. Ore Geology Reviews, 2008, 33(2):117-133.

    Google Scholar

    GILG H A, BONI M. Stable isotope studies on Zn and Pb carbonates:their role in mineral exploration of non-sulphide deposits[A]//Proceedings[C], SEG Conference, Perth WA. 2004:361-365.

    Google Scholar

    GILG H A, HOCHLEITNER R, KELLER P, et al. A fluid inclusion and stable isotope study of secondary oxidation minerals from the Tsumeb Cu-Pb-Zn deposit, Namibia[J]. Proceedings ECROFI XI, Budapest, Hungary, 2003b, 2:78-79.

    Google Scholar

    GNOINSKI J. Skorpion Zinc:optimization and innovation[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2007, 107(10):657-662.

    Google Scholar

    GOODFELLOW W D, LYDON J W. Sedimentary-exhalative (SEDEX) deposits[J]. Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007, 5:163-183.

    Google Scholar

    GRIFFITH S V. The mineral resources of Burma[M]. London:Mining Magazine, 1956, 95:9-18.

    Google Scholar

    GROVES I, GREGORY I, CARMAN C. Reliance-a new high-grade zinc silicate-oxide discovery in the Flinders Ranges[J]. Mines and Energy South Australia Journal, 2002, 25:6-10.

    Google Scholar

    HEYLA V. Oxidized zinc deposits of the United States, Part 2. Utah[J]. U.S. Geologicial Survey Bulletin, 1963, 1135-B:104.

    Google Scholar

    HEYL A V. Oxidized zinc deposits of the United States, Part 3. Colorado[J]. U.S. Geological Survey Bulletin, 1964, 1135-C:98.

    Google Scholar

    HEYL A V, BOZION C N. Oxidized zinc deposits of the United States, Part 1[J]. General Geology:U.S. Geological Survey Bulletin, 1962, 1135-A:52.

    Google Scholar

    HITZMAN M W, BEATY D W. The Irish Zn-Pb-(Ba) orefield[A]. In Sangster D F, ed. Carbonate-hosted lead-zinc deposits:Society of Economic Geologists Special Publication[C], 1996, 4:112-143.

    Google Scholar

    HITZMAN M W, REYNOLDS N A, SANGSTER D F, et al. Classification, genesis, and exploration guides for nonsulfide zinc deposits[J]. Economic Geology, 2003, 98(4):685-714.

    Google Scholar

    HITZMAN M W, THORMAN C H, ROMAGNA G, et al. The Morro Agudo Zn-Pb deposit, Minas Gerais, Brazil:a Proterozoic Irish-type carbonate hosted sedex replacement deposit[A]//Abstracts with Programs-Geological Society of America[C]. 1995, 27:A408.

    Google Scholar

    HITZMAN M W. Zinc oxide and zinc silicate deposits-a new look[A]//GSA Annual Meeting, Abstracts with Programs[C], 2001, 33:A-336.

    Google Scholar

    JOHNSON C A, SKINNER B J. Geochemistry of the furnace magnetite bed, Franklin, New Jersey, and the relationship between stratiform iron oxide ores and stratiform zinc oxide-silicate ores in the new Jersey Highlands[J]. Economic Geology, 2003, 98(4):837-854.

    Google Scholar

    JOHNSONC A. Geochemical constraints on the origin of the Sterling Hill and Franklin zinc deposits, and the Furnace magnetite bed, northwestern New Jersey[M]. Littleton:Society of Economic Geologists Guidebook Series, 2001, 35:89-97.

    Google Scholar

    KAMONA F. The carbonate hosted Kabwe Pb-Zn deposit, central Zambia[D]. Aachen:Rheinisch-Westfalischen Technischen Hoschschule, 1993.

    Google Scholar

    KÄRNER K. The Metallogenesis of the Skorpion Non-sulphide Zinc Deposit, Namibia[D]. Unpublished Ph.D. Thesis (Dr. rer. nat.) Wittenberg, Germany, Mathemattisch Naturwissenschaftlich-Technischen Fakultat der Martin-Luther-Universitat Halle, 2006, 133 pp.

    Google Scholar

    KELLY W C. Topical study of lead-zinc gossans[J]. State Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Metallurgy Bulletin, 1958, 46:42-47.

    Google Scholar

    LARGE D. The geology of n牯慮楳湵獬??汩獤敥瘠楺敩牮??慤湥摰扯潳潩歴?漭晁??硯灶汥潲牶慩瑥楷潛湊??攠潅捲桺敭浥楴獡瑬牬礬?′???水?‵???ㄩ???????戴爮?呢?伾剌久??剈???剌??呓桁敎?捓桔故浒椠捄愠汆?洠潋扅楌汌楅瑙礠?愠湄搬?瑥牴愠湡獬瀮漠牓瑥?潩晭?敮汴攭浨敯湳瑴獥?椠湬?瑡桤攭?睩敮慫琠桤敥牰楯湳杩?攺湁瘠楧牬潯湢浡敬渠瑰孥?嵳???湴??略瑛瑊???剅????慭湩摣?婇敥敯杬敯牧獹???‰整摨猠??剮敩杶潥汲楳瑡桲??硖灯汬潵牭慥琬椠漲渰‰?攺漵挶栱攭洶椰猷琮爼祢?椾湌?呁牖潅灎楓挠慐氠?愬渠摐?協畔扏瑎爠潊瀠楄挮愠汔?呥攠牄牥慳楥湲獴嬠?嵩???湭??潥瘬攠瑓瑡??????卡??敩摮???慯湵摮扴潡潩歮?漬映??硬灩汦潯牲慮瑩楡漺湁??敯潳捳桩敢浬楥猠瑩牮祴?????????????????戠牌?嘣?嘲???佧?坡???剓佷??乥????敤渠敆獲楡獮?潬晩?琬栠敎?敷愠牊瑥桲祳?潹牛敊獝?愠瑓??愠牂灥敲湮扡敲牤杩??猠潃畯瑵桮?捹攠湍瑵牳慥汵?匠睁敳摳敯湣孩?嵴???攠潑汵潡杲楴獥歲慬????日???爠攴渷椺渱朷攭渲猱?椼?卲琾潌捉欠桎漬氠测?晌??????爠桇慥湯摬汯楧湩杣愠牣?????????????の??????-hosted Zn-Pb-(Sr) mineralization, Jinding deposit, Yunnan Province, China-a new environment for sediment-hosted Zn-Pb deposits[A]//Energy and Mineral Resources for the 21st Century[C]:Geology of Mineral Deposits:Mineral Economics:Proceedings of the 30th International Geological Congress, Beijing:4-14 August 1996. VSP, 1998, 9:67-82.

    Google Scholar

    LIAGHAT S, MOORE F, JAMI M. The Kuh-e-Surmeh mineralization, a carbonate-hosted Zn-Pb deposit in the simply folded belt of the Zagros Mountains, SW Iran[J]. Mineralium Deposita, 2000, 35(1):72-78.

    Google Scholar

    LIAKOPOULOS A., Hydrothermalisme et mineralisations métallifères de l'île de Milos (Cyclades, Grece)[D]. Paris:Memoires des Sciences de la Terre, Academie de Paris, Université Pierre et Marie Curie, 1987.

    Google Scholar

    LINDGREN W, LOUGHLIN G F, HEIKES V C. Geology and ore deposits of the Tintic mining district, Utah[M]. Reston:U.S. Geological Survey Professional Paper. 1919, 107:282 p.

    Google Scholar

    LYDON J W. Sedimentary exhalative sulphides (Sedex)[A]. In:Eckstrand O R, Sinclair W D, and Thorpe R I, eds., Geology of Canadian Mineral Deposit Types[C], Geological Survey of Canada, 1995, 8:130-152.

    Google Scholar

    MARINOS G. The ores of lead and zinc in Greece[J]. In:Dunham K C, ed., The Geology, Paragenesis, and Reserves of Lead and Zinc:International Geological Congress, 18th, Proceedings Part VⅡ, 1950:308-313.

    Google Scholar

    MEGAW P K M, RUIZ J, TITLEY S R. High-temperature, carbonate-hosted Ag-Pb-Zn (Cu) deposits of northern Mexico[J]. Economic Geology, 1988, 83(8):1856-1885.

    Google Scholar

    MELCHIORRE E B, ENDERS M S. Stable isotope geochemistry of copper carbonates at the Northwest Extension deposit, Morenci district, Arizona:implications for conditions of supergene oxidation and related mineralization[J]. Economic Geology, 2003, 98:607-621.

    Google Scholar

    MELCHIORRE E B, WILLIAMS P A, BEVINS R E. A low temperature oxygen isotope thermometer for cerussite, with application at Broken Hill, New South Wales, Australia[J]. Geochimica et Cosmochimica Acta, 2001, 65:2527-2533.

    Google Scholar

    MONDILLO N, BONI M, BALASSONE G, et al. The Jabali nonsulfide Zn-Pb-Ag deposit, western Yemen[J]. Ore Geology Reviews, 2014, 61:248-267.

    Google Scholar

    MONTEIRO L V S, BETTENCOURT J S, JULIANIC, et al. Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrósia and Fagundes sulfide-rich carbonate-hosted Zn-(Pb) deposits, Minas Gerais, Brazil[J]. Ore Geology Reviews, 2006, 28(2):201-234.

    Google Scholar

    MORRIS H T, LOVERING T S. General geology and mines of the East Tintic mining district, Utah and Juab counties, Utah[M]. Reston:U.S. Geological Survey Professional Paper, 1979, 1024:203.

    Google Scholar

    MORRISH T. The Main Tintic mining district, Utah[J]. In:Ridge J D, ed., Ore deposits of the United States, 1933-1967 (Graton-Sales volume):American Institute of Mining, Metallurgy, and Petroleum Engineers, 1968:1043-1073.

    Google Scholar

    NUSPL A. Genesis of nonsulfide zinc deposits and their future utilization[J]. TU Bergakademie Freiberg, 2009:1-9.

    Google Scholar

    OHMOTO H, RYE R O. Isotopes of sulfur and carbon[A]//Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits[M], 2nd edition. New York:Wiley, 1979:509-567.

    Google Scholar

    PAN G T, WANG L Q, LI R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14.

    Google Scholar

    PRIDE K, SALEHI H. Angouran zinc deposit, Iran[J]. Prospectors and Developers Association of Canads, Abstracts, 2003, 24.

    Google Scholar

    REICHERT J, BORGG. Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits[J]. Ore Geology Reviews, 2008, 33(2):134-151.

    Google Scholar

    RELVAS J M R S, BARRIGA F J A S, LONGSTAFFE F J. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. Ⅱ. Oxygen, hydrogen, and carbon isotopes[J]. Economic Geology, 2006, 101(4):791-804.

    Google Scholar

    REYNOLDS N A, CHISNALL T W, KAEWSANG K, et al. The padaeng supergene nonsulfide zinc deposit, Mae Sod, Thailand[J]. Economic Geology, 2003, 98(4):773-785.

    Google Scholar

    ROBINSON B W. The origin of mineralization at the Tui mine, Te Aroha, New Zealand, in the light of stable isotope studies[J]. Economic Geology, 1974, 69:910-925.

    Google Scholar

    ROSE A W, HAWKES H E, WEBBJ S. Geochemistry in mineral exploration[M]. London:Academic Press, 1979, 657 p.

    Google Scholar

    SANGAMESHWAR S R, BARNES HL. Supergene processes in zinc-lead-silver sulfide ores in carbonates[J]. Economic Geology, 1983, 78(7):1379-1397.

    Google Scholar

    SANTORO L, BONI M, HERRINGTONR, et al. The Hakkari nonsulfide Zn-Pb deposit in the context of other nonsulfide Zn-Pb deposits in the Tethyan Metallogenic Belt of Turkey[J]. Ore Geology Reviews, 2013, 53:244-260.

    Google Scholar

    SCHNEIDER J, BONI M, LAUKAMPC, et al. Willemite (Zn2SiO4) as a possible Rb-Sr geochronometer for dating nonsulfide Zn-Pb mineralization:examples from the Otavi Mountainland (Namibia)[J]. Ore Geology Reviews, 2008, 33(2):152-167.

    Google Scholar

    SHEPARD W M, MORRIS H T, COOK DR. Geology and ore deposits of the Tintic mining district, Utah[A]. In:Ridge J D, ed., Ore deposits of the United States, 1933-1967 (Graton-Sales volume):American Institute of Mining, Metallurgy, and Petroleum Engineers[C], 1968:956-959.

    Google Scholar

    TAKAHASHI T. Supergene alteration of zinc and lead deposits in limestone[J]. Economic Geology, 1960, 55(6):1083-1115.

    Google Scholar

    THOMPSON T B, AREHARTG B. Geology and the origin of ore deposits in the Leadville district, Colorado-Part I. Geologic studies of orebodies and wall rocks[J]. Carbonate-hosted sulfide deposits of the central Colorado mineral belt:Economic Geology Monograph, 1990, 7:130-155.

    Google Scholar

    THORNBER M R, TAYLOR G F. The mechanisms of sulphide oxidation and gossan formation[J]. Regolith exploration geochemistry in tropical and subtropical ter

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2538) PDF downloads(1827) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint