2014 Vol. 47, No. 4
Article Contents

YIN Ming, Guo Min, ZHANG Haidong, LIU Jianchao, WANG Dequan, LU Chunyun. Constraints of Hydrothermal Zircon U-Pb Ages on the Metallogenic Epoch of the Xishimen Skarn Iron Deposit, Sourthern Hebei Province[J]. Northwestern Geology, 2014, 47(4): 198-208.
Citation: YIN Ming, Guo Min, ZHANG Haidong, LIU Jianchao, WANG Dequan, LU Chunyun. Constraints of Hydrothermal Zircon U-Pb Ages on the Metallogenic Epoch of the Xishimen Skarn Iron Deposit, Sourthern Hebei Province[J]. Northwestern Geology, 2014, 47(4): 198-208.

Constraints of Hydrothermal Zircon U-Pb Ages on the Metallogenic Epoch of the Xishimen Skarn Iron Deposit, Sourthern Hebei Province

  • Xishimen iron deposit is one of the typical skarn iron deposits in northern China. The new 40Ar/<sup>39Ar mineralization ages of phlogopite in Xishimen iron deposit are 133.1±1.3 Ma and 137.1±1.5 Ma, slightly older than the ages (126-136 Ma) of mineralization parent rocks (Wu'an complex), which is unreasonable. This paper deals with the analyses of geochronology of the metallogenic event on the basis of LA-ICP-MS zircons U-Pb dating for hornblende syenite and skarn dikes developed in this area. The zircons of hornblende syenite are light yellow-colorless, transparent, angular and irregular with weak oscillatory zonings, and a few zircons have irregular inherited zircon core. LA-ICP-MS U-Pb analyses of these zircons yields a weighted mean 206Pb/238U concordia age of 135.6±1.5 Ma, which represents the crystallization age of the Wu'an complex. Zircons of skarn dikes are brown, transparent to translucent. In contrast to magmatic zircons, hydrothermal zircons have low Th, U, total REE contents (Th=222.37×10-6-1 541.11×10-6, U=218.44×10-6-989.17×10-6) and Th/U value (Th/U=0.90-1.56). They display a strong positive Ce anomaly(δCe=4.46-196.22) and negative Eu anomaly(δEu=0.59-0.80). Zircons from skarn dikes yielded 206Pb/238U ages ranging from 124.9 Ma to 133.0 Ma with a weighted mean age of 129.4±2.6 Ma, which is interpreted as the age of crystallization of hydrothermal zircons, showing that 129 Ma is the chief metallogenic period in Xishimen area.
  • 加载中
  • 陈斌, 田伟, 翟明国, 等.太行山和华北其它地区中生代岩浆作用的锆石U-Pb年代学和地球学特征及其岩浆成因和地球动力学意义[J]. 岩石学报, 2005, 21(1): 13-24.

    Google Scholar

    Chen B, Tian W, Zhai M G, et al. Zircon U-Pb geochronology and geochemistry of the Mesozoic magmatism in the Taihang Mountains and other places of the North China craton, with implication for petrogenesis and geodynamic setting [J]. Act Petrologica Sinica, 2005, 21(1): 13-24 (in Chinese with English abstract).

    Google Scholar

    董建华, 陈斌, 关周凌.太行山南段符山岩体的成因:岩石学和地球化学证据[J]. 自然科学进展, 2003, 13(7): 767-773.

    Google Scholar

    Dong J H, Chen B, Guan Z L. Petrogenesis of Fushan rocks in northern Taihang Mountains: constrains from petrology and geochemistry [J]. Progress in Natural Science, 2003, 13(7): 767-773 (in Chinese).

    Google Scholar

    胡芳芳, 范宏瑞, 杨进辉, 等.胶东乳山含金石英脉型金矿的成矿年龄: 热液锆石SHRIMP法U-Pb测定[J]. 科学通报, 2004, 49(12): 1191-1199. Hu F F, Fan W M, Yang J H, et al. Constraints of Hydrothermal SHRIMP Zircon U-Pb Ages on the Metallogenic Epoch of the quartz vein-altered rock type gold deposits in east Shandong province [J]. Chinese Science Bulletin, 2004, 49(12): 1191-1199 (in Chinese) 罗照华, 邓晋福, 赵国春, 等.太行山造山带岩浆活动特征及其造山过程反演[J]. 中国地质大学学报—地球科学, 1997, 22(3): 27-254.

    Google Scholar

    Luo Z H, Deng J F, Zhao G C, et al. Characterristics of magmatic activities and orogenic process of taihangshan intraplate orogen [J]. Earth Science-Journal of China University of Geosciences. 1997, 22(3): 27-254 (in Chinese with English abstract).

    Google Scholar

    彭头平, 王岳军, 范蔚茗, 等.南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究[J]. 岩石学报, 2004, 20: 1253-1262.

    Google Scholar

    Peng T P, Wang Y J, Fan W M, et al. SHRIMP zircon U-Pb geochronology of the diorites for southern Taihang Mountains in the North China Interior and its petrogenesis[J]. Acta PetroIogica Sinica, 2004, 20(5): 1253-1262 (in Chinese with English abstract).

    Google Scholar

    唐勇, 张辉, 吕正航.不同成因锆石阴极发光及微量元素特征:以新疆阿尔泰地区花岗岩和伟晶岩为例[J]. 矿物岩石, 2012, 32(1): 8-15.

    Google Scholar

    Tang Y, Zhang H, Lü Z H. Characteristics of zircon cathodoluminescence and trace element of granite and pegmatite from altal mountains, northwest China[J]. Mineral Petrol, 2012, 32(1): 8-15 (in Chinese with English abstract).

    Google Scholar

    许文良, 杨德彬, 裴福萍, 等.太行山南段符山高镁闪长岩的成因—拆沉陆壳物质熔融的熔体与地幔橄榄岩反应的结果[J]. 岩石学报, 2009, 25(8): 1947-1961.

    Google Scholar

    Xu W L, Yang D B, Pei F P, et al. Petrogenesis of Fushan high Mg# diorites from the southern Taihang Mts.in the central North China Craton:Resulting from Interaetion of Peridotite-melt derived from Partial melting of delaminated lower continental crust[J]. Acta Petrologica Siniea, 2009, 25(8):1947-1961 (in Chinese with English abstract).

    Google Scholar

    张小文, 向华, 钟增球, 等. 海南尖峰岭岩体热液锆石U-Pb定年及微量元素研究:对热液作用及抱伦金矿成矿时代的限定[J]. 地球科学-中国地质大学学报, 2009, 34(6): 921-931. Zhang X W, Xiang H, Zhong Z Q, et al. U-Pb Dating and Trace Elements Composition of Hydrothermal Zircons from Jianfengling Granite, Hainan: Restriction on the Age of Hydrothermal Event and Mineralization of Baolun Gold Deposit[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(6): 921-931 (in Chinese with English abstract).

    Google Scholar

    郑建明. 冀南邯邢地区夕卡岩铁矿成矿流体及成矿机制[C]. 北京: 中国地质大学(北京), 2007.

    Google Scholar

    Zheng J M. The Ore-forming Fluid and Mineralization of Skarn Fe Deposits in Handan-Xingtai Area, South Hebei[C]. China University of Geosciences, Beijing,2007 (in Chinese with English abstract).

    Google Scholar

    周凌, 陈斌. 南太行洪山正长岩体的成因和意义:锆石SHRIMP年代学、化学成分和Sr-Nd同位素特征[J]. 自然科学进展[J], 2005, 15(11): 1357-1364.

    Google Scholar

    Zhou L, Chen B. Petrogenesis of Hongshan syenite in southern Taihang Mountains: constrains on SHRIMP zircon U-Pb geochronology, chemistry and Sr-Nd isotopic[J]. Progress in Natural Science, 2005, 15(11): 1357-1364 (in Chinese). Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology, 2001, 172(1-2): 5-24.

    Google Scholar

    Dubinska E, Bylinab P, Kozlowskia A, et al. U-Pb dating of serpentinization: Hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland)[J]. Chemical Geology, 2004, 203: 183-203.

    Google Scholar

    Geisler T, Pidgeon R. T, Kurtz R, et al. Experimental hydrothermal alteration of partially metamict zircon[J]. American Mineralogist, 2003, 88(10): 1496-1513.

    Google Scholar

    Hanchar J M, Westrenen W V. Rare earth element behavior in zircon-melt systems[J]. Elements, 2007, 3(1): 37-42.

    Google Scholar

    Liu X M, Gao S, Diwu C R, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20μm spot size[J]. Chinese Science Bulletin, 2007, 52(9): 1257-1264.

    Google Scholar

    Martin-Martin J D, Tritlla J, Cardellach E, et al. Tectonically driven fluid flow and associated low-grade metamorphism during the Alpine compression in the eastern Iberian Chain (Spain)[J]. Journal of Geochemical Exploration, 2006, 89(1-3): 267-270.

    Google Scholar

    Reed M J, Candela P A, Piccoli P M. The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800 degrees C and 200 MPa[J]. Contributions to Mineralogy and Petrology, 2000, 140(2), 251-262.

    Google Scholar

    Rizvanova N G, Levchenkov O A, Belous A E, et al. Zircon reaction and stability of the U-Pb isotope system during interaction with carbonate fluid: Experimental hydrothermal study[J]. Contributions to Mineralogy and Petrology, 2000, 139(1): 101-114.

    Google Scholar

    Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1-2): 123-138.

    Google Scholar

    Shen J F, Santosh M, Li S R, et al. The Beiminghe skarn iron deposit, eastern China: Geochronology, isotope geochemistry and implications for the destruction of the North China Craton[J]. Lithos, 2013, 156-159: 218-229.

    Google Scholar

    Pettke T, Audètat A, Schaltegger U, et al. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia), Part Ⅱ: Evolving zircon and thorite trace element[J]. Chemistry Chemical Geology, 2005, 220: 191-213. Watson E B, Cherniak D J, Hanchar J M, et al. The incorporation of Pb into zircon[J]. Chemical Geology, 1997, 141 (1-2), 19-31.

    Google Scholar

    Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution[J]. Precambrian Research, 2000, 103(1-2): 55-88.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2617) PDF downloads(2167) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint