2007 Vol. 27, No. 6
Article Contents

WANG Ru-jian, XIAO Wen-shen, XIANG Fei, CHEN Jian-fang, GAO Ai-guo, CHEN Rong-hua, CHENG Zhen-bo, LI Xiu-zhu, HAN Yi-bing, LI Liang. DISTRIBUTION PATTERN OF BIOGENIC COMPONENTS IN SURFACE SEDIMENTS OF THE WESTERN ARCTIC OCEAN AND THEIR PALEOCEANOGRAPHIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2007, 27(6): 61-69.
Citation: WANG Ru-jian, XIAO Wen-shen, XIANG Fei, CHEN Jian-fang, GAO Ai-guo, CHEN Rong-hua, CHENG Zhen-bo, LI Xiu-zhu, HAN Yi-bing, LI Liang. DISTRIBUTION PATTERN OF BIOGENIC COMPONENTS IN SURFACE SEDIMENTS OF THE WESTERN ARCTIC OCEAN AND THEIR PALEOCEANOGRAPHIC IMPLICATIONS[J]. Marine Geology & Quaternary Geology, 2007, 27(6): 61-69.

DISTRIBUTION PATTERN OF BIOGENIC COMPONENTS IN SURFACE SEDIMENTS OF THE WESTERN ARCTIC OCEAN AND THEIR PALEOCEANOGRAPHIC IMPLICATIONS

  • Biogenic components in total 66 surface sediments, which were taken in the western Arctic Ocean during the First and Second Chinese National Arctic Expedition cruises, are analyzed for probing into the relationship between surface productivity and water masses in area studied. As a result of the investigation, high organic carbon and biogenic opal percentages appear in the southwestern Chukchi Sea. On the contrary, low organic carbon and biogenic opal percentages occur in several areas, including the central Chukchi Sea, Herald Shoal, seacoast of Alaska, Chukchi Plateau, Northwind Ridge and Canada Basin. High foraminiferal abundance emerges in the Chukchi Plateau, Northwind Ridge and Canada Basin where the planktonic foraminifera dominate. Inversely, low foraminiferal abundance comes on the shelf of the Chukchi Sea where the benthic foraminifera dominate. Distribution patterns of biogenic components are associated obviously with three branches of the Pacific Water from the Bering Strait into the Chukchi Sea and the subsurface Atlantic Water. High surface productivity presents in the area of abundant nutrient Anadyr Water in the western Chukchi Sea. Reversely, low surface productivity appears in the areas influenced by scant nutrient Alaska Coastal Water and terrigenous matter input along northwestern Alaska seacoast. Similarly, low surface productivity in the northern area higher than 75°N and Canada Basin is attributed to the long-term sea ice coverage. High calcareous productivity in the outer side of Chukchi Sea Shelf and high latitude is ascribed to the influence of the subsurface Atlantic Water. The Corg/N ratio in surface sediments and its distribution pattern indicate that the organic carbon in surface sediments of the Chukchi Sea mainly originates from marine source and is controlled by biological pump process. High correlative coefficient between organic carbon and biogenic opal shows a closer relationship between organic carbon and diatom. Primary productivity of diatom and other phytoplankton can control the absorption and release of biological pump for carbon.
  • 加载中
  • [1] Moritz R E, Bitz C M, Steig E J. Dynamics of recent climate change in the Arctic[J]. Science, 2002, 297:1497-1502.

    Google Scholar

    [2] Smith L M, Miller G H, Otto-Bliesner B, et al. Sensitivity of the northern hemisphere climate system to extreme changes in Holocene Arctic sea ice[J]. Quaternary Science Reviews, 2002, 22:645-658.

    Google Scholar

    [3] Laxon S, Peacock N, Smith D. High interannual variability of sea ice thickness in the Arctic region[J]. Nature, 2003, 425:947-950.

    Google Scholar

    [4] 陈立奇. 北极海洋环境与海气相互作用研究[M]. 北京:海洋出版社, 2003.[CHEN Li-qi.Marine Environment and Air-Sea Interaction in the Arctic Region[M]. Beijing:China Ocean Press, 2003.]

    Google Scholar

    [5] 陈荣华, 孟翊, 华棣, 等. 楚科奇海与白令海表层沉积中的钙质和硅质微体化石研究[J]. 海洋地质与第四纪地质, 2001, 21(4):25-30.

    Google Scholar

    [CHEN Rong-hua, MENG Yi, HUA Di, et al. Calcareous and siliceous microorganisms in surface sediments of Chukchi and Bering Seas[J]. Marine Geology and Quaternary Geology, 2001, 21(4):25-30.]

    Google Scholar

    [6] 中国首次北极科学考察队. 中国首次北极科学考察报告[R]. 北京:海洋出版社, 2000.[Team of the First Chinese National Arctic Expedition. The Report of First Chinese Arctic Research Expedition[R]. Beijing:China Ocean Press, 2000.]

    Google Scholar

    [7] 张占海. 中国第二次北极科学考察报告[R]. 北京:海洋出版社, 2003.[ZHANG Zhan-hai. The Report of 2003 Chinese Arctic Research Expedition[R]. Beijing:China Ocean Press, 2003.]

    Google Scholar

    [8] 孟翊, 陈荣华, 郑玉龙. 白令海和楚科奇海表层沉积中的有孔虫及其沉积环境[J]. 海洋学报, 2001, 23(6):85-93.

    Google Scholar

    [MENG Yi, CHEN Rong-hua, ZHENG Yu-long. Foraminifera in the surface sediments of the Bering and Chukchi Seas and their sedimentary environment[J]. Acta Oceanologica Sinica, 2001, 23(6):85-93.]

    Google Scholar

    [9] 陈志华, 石学法, 蔡德陵, 等. 北冰洋西部沉积物有机碳、氮同位素特征及其环境指示意义[J]. 海洋学报, 2006, 28(6):61-71.

    Google Scholar

    [CHEN Zhi-hua, SHI Xue-fa, CAI De-ling, et al. Organic carbon and nitrogen isotopes in surface sediments from the western Arctic Ocean and their implications for sedimentary environments[J]. Acta Oceanologica Sinica, 2006, 28(6):61-71.]

    Google Scholar

    [10] 郝玉, 龙江平. 北极楚科奇海海底表层沉积物有机碳的生物地球化学特征[J]. 海洋科学进展, 2007, 25(1):63-72.

    Google Scholar

    [HAO Yu, LONG Jiang-ping. Biogeochemical characteristics of organic carbon in surface sediments from the Chukchi Sea[J]. Advances in Marine Science, 2007, 25(1):63-72.]

    Google Scholar

    [11] Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in the pelagic marine sediments[J]. Deep Sea Research, 1989, 36(9):1415-1426.

    Google Scholar

    [12] 王汝建, 成鑫荣, 刘传联, 等. 赤道西太平洋暖池区更新世以来的生源沉积物沉积特征及其古海洋学意义[J]. 海洋地质与第四纪地质, 2001, 21(4):71-76.

    Google Scholar

    [WANG Ru-jian, CHENG Xin-rong, LIU Chuan-lian, et al. Depositional characteristics of biogenic sediments and their paleoceanographic implications in the West Pacific Warm Pool during Pleistocene[J]. Marine Geology and Quaternary Geology, 2001, 21(4):71-76.]

    Google Scholar

    [13] Bates N R, Best M H P, Hansell D A. Spatio-temporal distribution of dissolved inorganic carbon and net community production in the Chukchi and Beaufort Seas[J]. Deep Sea Res.Ⅱ, 2005, 52:3303-3323.

    Google Scholar

    [14] Clough L M, Ambrose W G, Cochran K J, et al. Infaunal density, biomass and bioturbation in the sediments of the Arctic Ocean[J]. Deep-Sea Res. Ⅱ, 1997, 44:1683-1704.

    Google Scholar

    [15] 汪品先. 十五万年来的南海[M]. 上海:同济大学出版社, 1995.[WANG Pin-xian.South China Sea Since 150000 Years[M]. Shanghai:Tongji University Press, 1995.]

    Google Scholar

    [16] Chen M T, Shiau L J, Yu P S, et al. 500000-year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island)[J]. Palaeo. Palaeo. Palaeo., 2003, 197:113-131.

    Google Scholar

    [17] 黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2):163-170.

    Google Scholar

    [HUANG Yong-jian, WANG Cheng-shan, WANG Yun-liang. Progress in the study of proxies of paleocean productivity[J]. Earth Science Frontiers, 2005, 12(2):163-170.]

    Google Scholar

    [18] Charles C, Froelich P, Zibello M, et al. Biogenic opal in Southern Ocean sediments over the last 450000 years:Implications for surface water chemistry and circulation[J]. Paleoceanography, 1991, 6(6):697-728.

    Google Scholar

    [19] 王汝建, 李建. 南海ODP 1143站第四纪高分辨率的蛋白石记录及其古生产力意义[J]. 科学通报, 2003, 48(1):74-77.

    Google Scholar

    [WANG Ru-jian, LI Jian. Quaternary high resolution opal record and its paleoproductivity implication at ODP Site 1143, southern South China Sea[J]. Chinese Science Bulletin, 2003, 48(4):363-367.]

    Google Scholar

    [20] 王汝建, 翦知湣, 肖文申, 等. 南海第四纪的生源蛋白石记录:与东亚古季风、全球冰量和轨道驱动的联系[J]. 中国科学D辑, 2007, 37(4):521-533.

    Google Scholar

    [WANG Ru-jian, JIAN Zhi-min, XIAO Wen-shen, et al. Quaternary biogenic opal records in the South China Sea:linkages to East Asian monsoon, global ice volume and orbital forcing[J]. Science in China (Series D),2007, 50(5):710-724.]

    Google Scholar

    [21] Heimdal B R. Arctic Ocean phytoplankton[M]//The Arctic Seas. New York, Van Nostrand Reinhold, 1989:193-222.

    Google Scholar

    [22] Subba R D V, Platt T. Primary production of Arctic waters[J]. Polar Biology, 1984, 3:191-201.

    Google Scholar

    [23] 陈建芳, 张海生, 金海燕, 等. 北极陆架沉积碳埋藏及其在全球碳循环中的作用[J]. 极地研究, 2004, 16(3):193-201.

    Google Scholar

    [CHEN Jian-fang, ZHANG Hai-sheng, JIN Hai-yan, et al. Burial of sedimentary organic carbon in the Arctic shelves and its role in global carbon cycling[J]. Chinese Journal of Polar Research, 2004, 16(3):193-201.]

    Google Scholar

    [24] 杨清良, 林更铭, 林茂, 等. 楚科奇海和白令海浮游植物的种类组成与分布[J]. 极地研究, 2002, 14(2):113-125.

    Google Scholar

    [YANG Qing-liang, LIN Geng-ming, LIN Mao, et al. Species composition and distribution of phytoplankton in Chukchi Sea and Bering Sea[J]. Chinese Journal of Polar Research, 2002, 14(2):113-125.]

    Google Scholar

    [25] 林景宏, 戴燕玉, 张金标, 等. 夏季楚科奇海浮游动物的生态特征[J]. 极地研究, 2001, 13(2):107-116.

    Google Scholar

    [LIN Jing-hong, DAI Yan-yu, ZHANG Jin-biao, et al. Ecology of zooplankton in the Chukchi Sea in summer[J]. Chinese Journal of Polar Research, 2001, 13(2):107-116.]

    Google Scholar

    [26] 李荣冠, 郑凤武, 江锦祥. 楚科奇海及白令海大型底栖生物初步研究[J]. 生物多样性, 2003, 11(3):204-215.

    Google Scholar

    [LI Rong-guan, ZHENG Feng-wu, JIANG Jin-xiang, et al. Macrobenthos in the Chukchi Sea and Bering Sea[J]. Biodiversity Science, 2003, 11(3):204-215.]

    Google Scholar

    [27] 陈波, 何剑锋, 蔡明红, 等. 楚科奇海浮冰区夏季短期颗粒有机物通量及其主要组分[J]. 极地研究, 2003, 15(2):83-90.

    Google Scholar

    [CHEN Bo, HE Jian-feng, CAI Ming-hong, et al. Short-term flux and composition of particulate organic matter in pack ice of Chukchi Sea in summer[J]. Chinese Journal of Polar Research, 2003, 15(2):83-90.]

    Google Scholar

    [28] 肖文申, 王汝建, 成鑫荣, 等. 北冰洋西部表层沉积物中的浮游有孔虫稳定氧、碳同位素与水团性质的关系[J]. 微体古生物学报, 2006, 23(4):361-369.

    Google Scholar

    [XIAO Wen-shen, WANG Ru-jian, CHENG Xin-rong, et al. Relationship between water properties and planktonic foraminiferal stable isotopes from surface sediments in western Arctic Ocean[J]. Acta Micropaleontologica Sinica, 2006, 23(4):361-369.]

    Google Scholar

    [29] Spielhagen R F, Erlenkeuser H. Stable oxygen and carbon isotopes in planktonic foraminifers from Arctic Ocean surface sediments:Reflection of the low salinity surface water layer[J]. Marine Geology, 1994, 119(3~4):227-250.

    Google Scholar

    [30] Stevenson F J, Cheng C N. Organic geochemistry of the Argentine Basin sediments:carbon-nitrogen relationships and Quaternary correlations[J]. Geochim. Cosmochim., 1972, 36:653-671.

    Google Scholar

    [31] Emerson S, Hedges J. Processes controlling the organic carbon content of open ocean sediments[J]. Paleoceanography, 1988, 3:621-634.

    Google Scholar

    [32] Thunell R C, Miao Q, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea:Productivity variations and surface water pCod[J]. Paleoceanography, 1992, 7:143-162.

    Google Scholar

    [33] Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate material in the Amazon River[J]. Limonol. Oceanogr., 1986, 31:717-738.

    Google Scholar

    [34] Suess E, Muller P J. Productivity,Sedimentation Rate and Sedimentary Organic Matter in the Oceans, Ⅱ. Elemental Fractionation[M]. Colloques Internationaux du C N R S, 293, Editions du Centre National de la Recherche Scientifique. Paris, 1980:17-26.

    Google Scholar

    [35] Muller P J. C/N ratios in Pacific deep-sea sediments:effect of inorganic ammonium and organic nitrogen compounds sorbed by clays[J]. Geochim. Cosmochim. Acta, 1977, 41:765-776.

    Google Scholar

    [36] Delphine T, Head E J H, Wheeler P A. Mesozooplankton in the Arctic Ocean in summer[J]. Deep Sea Research, 1999, 146:1391-1415.

    Google Scholar

    [37] Stein R, Fahl K. Holocene accumulation of organic carbon at the Laptev Sea continental margin (Arctic Ocean):sources, pathway, and sinks[J]. Geo-Marine Letters, 2000, 20:27-36.

    Google Scholar

    [38] Aagaard K, Carmack E C. The sea ice and other fresh water in the Arctic circulation[J]. Journal of Geophysical Research, 1989, 94(C10):14485-14498.

    Google Scholar

    [39] Stein R, Korolev S. Shelf to basin sediment transport in the eastern Arctic Ocean[J]. Report on Polar Research, 1994, 144:87-100.

    Google Scholar

    [40] Riebesell U, Schloss I, Smetacek V. Aggregation of algae release from melting sea ice:Implications for seeding and sedimentation[J]. Polar Biol., 1991, (11):239-248.

    Google Scholar

    [41] Legendre L, Ackley S F, Dieckmann G S, et al. Ecology of sea ice biota. 2. Global significance[J]. Polar Biol., 1992, (12):429-444.

    Google Scholar

    [42] Gosselin M, Levasseur M, Wheeler P A, et al. New measurements of phytoplankton and ice algal production in the Arctic Ocean[J]. Deep Sea Res., 1997, 44:1623-1644.

    Google Scholar

    [43] Tréguer P. Silica and the cycle of carbon in the ocean[J]. Comptes Rendus Geoscience, 2002, 334:3-11.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(925) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint