2006 Vol. 26, No. 2
Article Contents

ZHAO Yu-long, LIU Zhi-fei, CHENG Xin-rong, JIAN Zhi-min. DOMINANCE FACTORS OF THE TERRIGENOUS SEDIMENT GRANULOMETRIC DISTRIBUTION IN THE LOWER SUNDA SLOPE[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 73-78.
Citation: ZHAO Yu-long, LIU Zhi-fei, CHENG Xin-rong, JIAN Zhi-min. DOMINANCE FACTORS OF THE TERRIGENOUS SEDIMENT GRANULOMETRIC DISTRIBUTION IN THE LOWER SUNDA SLOPE[J]. Marine Geology & Quaternary Geology, 2006, 26(2): 73-78.

DOMINANCE FACTORS OF THE TERRIGENOUS SEDIMENT GRANULOMETRIC DISTRIBUTION IN THE LOWER SUNDA SLOPE

  • High resolution grain size analysis was performed on sediments of Core 18268-2, drilled during the "SONNE-115" cruise. Detailed granulometric distribution record of lower Sunda slope sediments for the last 25 ka was obtained. The analysis revealed that sediments in this core were fine grained, predominated by 2~10 μm grains and short of grains larger than 63 μm. Statistical parameters such as mean and median values of the grain size were highly correlative with the relative percentage of the 10~63 μm fraction, implying that short-term change of the sediment grain size distribution was controlled by the paleocurrent speed. All statistical parameters and the relative percentage of the fractions underwent a notable transformation at about 15 ka, attributed to the rapid rising of the sea level during the MWP-1a (Melt Water Pulse 1a, 14.6~14.3 ka). Simultaneous with the rapid flooding of the Sunda shelf, the coastline retreated for several hundred kilometers, which changed the sediment supply of the region dramatically. We can conclude that the relative long-term variation of the siliclastic sediment granulometric distribution was controlled by the sediment supply.
  • 加载中
  • [1] Zheng G, Geng J, Wong H, et al. A semi-quantitative method for the reconstruction of eustatic sea level history from seismic profiles and its application to the southern South China Sea[J]. Earth and Planetary Science Letters, 2004, 223:443-459.

    Google Scholar

    [2] Sun X, Li X, Luo Y, et al. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160:301-316.

    Google Scholar

    [3] Hutchison C. Marginal basin evolution:the southern South China Sea[J]. Marine and Petroleum Geology, 2004, 21(9):1129-1148.

    Google Scholar

    [4] Kuhnt W, Hess S, Jian Z. Quantitative composition of benthic foraminiferal assemblages as a proxy indicator for organic carbon flux rates in the South China Sea[J]. Marine Geology, 1999, 156:123-157.

    Google Scholar

    [5] Hu J, Peng P, Jia G, et al. Biological markers and their carbon isotopes as an approach to the paleoenvironmental reconstruction of Nansha area, South China Sea, during the last 30 ka[J]. Organic Geochemistry, 2002, 33:1197-1204.

    Google Scholar

    [6] Hanebuth T, Stattegger K, Grootes P. Rapid flooding of the Sunda Shelf-a late glacial sea-level record[J]. Science, 2000, 288:1033-1035.

    Google Scholar

    [7] Stattegger K, Kuhnt W, Wong H, et al. Cruise Report SONNE 115 Sundaflut. Berichte-Reports, Geo.-Paläont. Inst. Univ. Kiel[R]. 1997, 86:100-101.

    Google Scholar

    [8] McCave I, Manighetti B, Robinson S. Sortable silt and fine sediment size/composition slicing:Parameters for palaeocurrent speed and palaeoceanography[J]. Paleoceanography, 1995, 10(3):593-610.

    Google Scholar

    [9] Lee M, Wei K, Chen Y. High resolution oxygen isotope stratigraphy for the last 150000 years in the southern South China Sea:core MD97-2151[J]. Terrestrial, Atomospheric and Oceanic Sciences, 1999, 10:239-254.

    Google Scholar

    [10] 汪品先. 十五万年来的南海[M]. 上海:同济大学出版社, 1995:28-30.[WANG Pin-xian. The South China Sea during the last 150000 Years[M]. Shanghai:Tongji University Press, 1995

    Google Scholar

    :28-30.]

    Google Scholar

    [11] Wang P, Wang L, Bian Y, et al. Late Quaternary paleoceanography of the South China Sea:surface circulation and carbonate cycles[J]. Marine Geology, 1995, 127:145-165.

    Google Scholar

    [12] Bianchi G, Hall I, McCave I, et al. Measurement of the sortable silt current speed proxy using the Sedigraph 5100 and Coulter Multisizer Ⅱe:precision and accuracy[J]. Sedimentology, 1999, 46:1001-1014.

    Google Scholar

    [13] Andy Field. Discovering Statistics Using Spss for Windows[Z]. London:Sage Publications Inc, 2000.

    Google Scholar

    [14] 青子琪, 刘连文, 郑洪波. 越南岸外夏季上升流区22万年来东亚季风的沉积与地球化学记录[J]. 海洋地质与第四纪地质, 2005, 25(2):67-72.

    Google Scholar

    [QING Zi-qi, LIU Lian-wen, ZHENG Hong-bo. Sedimentological and geochemical records of East Asian Monsoon in Summer Upwelling Region off the coast of Vietnam for the past 220000 Years[J]. Marine Geology and Quaternary Geology, 2005, 25(2):67-72.]

    Google Scholar

    [15] Liu J, Milliman J, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209:45-67.

    Google Scholar

    [16] Fairbanks R. A 17000-year glacio-eustatic sea level record:influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation[J]. Nature, 1989, 342:637-642.

    Google Scholar

    [17] Wong H, Lüdmann T, Haft C, et al. Quaternary sedimentation in the Molengraa paleo-delta, northern Sunda Shelf (southern South China Sea)[C]//Sidi F, Nummedal D, Imbert P, et al. Tropical Deltas of Southeast Asia and Vicinity-Sedimentology, Stratigraphy, and Petroleum Geology. SEPM Spec. Publ. 76. 2003.

    Google Scholar

    [18] Hanebuth T, Stattegger K. Depositional sequences on a late Pleistocene Holocene tropical siliciclastic shelf (Sunda Shelf, southeast Asia)[J]. Journal of Asian Earth Sciences, 2004, 23:113-126.

    Google Scholar

    [19] Steinke S, Kienast M, Hanebuth T. On the significance of sea-level variations and shelf paleo-morphology in governing sedimentation in the southern South China Sea during the last deglaciation[J]. Marine Geology, 2003, 201:179-206.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1033) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint