2021 Vol. 37, No. 3
Article Contents

WANG Changsheng, ZHU Junjiang, ZHAO Dongdong, YANG Guoming, XIONG Zixiang, ZHANG Shengsheng, LI Sanzhong, JIA Yonggang. ORIGIN AND EVOLUTION OF SUBMARINE CANYONS[J]. Marine Geology Frontiers, 2021, 37(3): 1-15. doi: 10.16028/j.1009-2722.2020.119
Citation: WANG Changsheng, ZHU Junjiang, ZHAO Dongdong, YANG Guoming, XIONG Zixiang, ZHANG Shengsheng, LI Sanzhong, JIA Yonggang. ORIGIN AND EVOLUTION OF SUBMARINE CANYONS[J]. Marine Geology Frontiers, 2021, 37(3): 1-15. doi: 10.16028/j.1009-2722.2020.119

ORIGIN AND EVOLUTION OF SUBMARINE CANYONS

More Information
  • Submarine canyons, the most remarkable landforms around the sea-land boundaries characterized by deep grooves, are globally distributed on continental margins. As the major vehicles for transportation of terrigenous clastic materials from land to deep sea, they are the key sites to study the regional source-sink systems, sea level fluctuations, tectonic evolution, and formation and accumulation of submarine oil and gas resources. This paper is devoted to the origin and evolution of submarine canyons on a global scale. Firstly, we briefly introduced the key research results of submarine canyons on the earth. Secondly, we summarized the regional structural background and origin of submarine canyon group in the northern South China Sea and Monterey Gulf. Thirdly, based on the major control factors, we described three types of submarine canyons: the strong-erosional type, the river-related erosional type, and the tectonic-headward-erosional type. Some new ideas are included for the classification of submarine canyons, exploration of deep water resources, and further study of paleoclimatic and tectonic evolutionary models.

  • 加载中
  • [1] DALY R A. Origin of submarine “canyons”[J]. American Journal of Science,1936,31(186):401-420.

    Google Scholar

    [2] SHEPARD F P. Submarine geology[M]. New York: Harper and Row, 1963.

    Google Scholar

    [3] NORMARK W R, CARLSON P R. Giant submarine canyons: is size any clue to their importance in the rock record?[M]//CHAN M A, ARCHER A W. Extreme depositional environments: mega end members in geologic time: Boulder, Colorado, Geological Society of America Special Paper 370, 2003: 175-190.

    Google Scholar

    [4] NEUENDORF K K E, MEHL J P Jr, JACKSON J A. Glossary of geology[M]. Virginia: American Geological Institute, 2005.

    Google Scholar

    [5] CARLSON P R,KARL H A. Development of large submarine canyons in the Bering Sea,indicated by morphologic,seismic,and sedimentological charac-teristics[J]. Geological Society of America Bulletin,1988,100(10):1594-1615. doi: 10.1130/0016-7606(1988)100<1594:DOLSCI>2.3.CO;2

    CrossRef Google Scholar

    [6] HARRIS P T,WHITEWAY T. Global distribution of large submarine canyons:geomorphic differences between active and passive continental margins[J]. Marine Geology,2011,285(1/4):69-86.

    Google Scholar

    [7] HARRIS P T,MACMILLAN-LAWLER M,RUPP J,et al. Geomorphology of the oceans[J]. Marine Geology,2014,352:4-24. doi: 10.1016/j.margeo.2014.01.011

    CrossRef Google Scholar

    [8] KHRIPOUNOFF A,VANGRIESHEIM A,CRASSOUS P,et al. High frequency of sediment gravity flow events in the Var submarine canyon (Mediterranean Sea)[J]. Marine Geology,2009,263(1/4):1-6.

    Google Scholar

    [9] DE STIGTER H C D,JESUS C C,BOER W,et al. Recent sediment transport and deposition in the Lisbon-Setúbal and Cascais submarine canyons. Portuguese Continental Margin[J]. Deep Sea Research II:Topical Studies Oceanography,2011,58(23/24):2321-2344.

    Google Scholar

    [10] PIERDOMENICO M,CASALBORE D,CHIOCCI F L. The key role of canyons in funnelling litter to the deep sea:a study of the Gioia Canyon (Southern Tyrrhenian Sea)[J]. Anthropocene,2020,30:100237. doi: 10.1016/j.ancene.2020.100237

    CrossRef Google Scholar

    [11] SØMME T O,HELLAND-HANSEN W,MARTINSEN O J,et al. Relationships between morphological and sedimentological parameters in source-to-sink systems:a basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research,2009,21(4):361-387. doi: 10.1111/j.1365-2117.2009.00397.x

    CrossRef Google Scholar

    [12] ZHU W L,ZHONG K,LI Y C,et al. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins[J]. Chinese Science Bulletin,2012,57:3121-3129. doi: 10.1007/s11434-011-4940-y

    CrossRef Google Scholar

    [13] WEIMER P, SLATT R M, Bouroullec R. Introduction to the petroleum geology of deepwater settings[M]. Tulsa: AAPG and Datapages, 2007.

    Google Scholar

    [14] MASSON D G,HUVENNE V A I,DE STIGTER H C,et al. Efficient burial of carbon in a submarine canyon[J]. Geology,2010,38(9):831-834. doi: 10.1130/G30895.1

    CrossRef Google Scholar

    [15] 苏明,沙志彬,匡增桂,等. 海底峡谷侵蚀-沉积作用与天然气水合物成藏[J]. 现代地质,2015,29(1):155-162. doi: 10.3969/j.issn.1000-8527.2015.01.019

    CrossRef Google Scholar

    [16] 刘海龄,吴世敏,魏常兴,等. 论河口海底淡水资源的形成[J]. 自然资源学报,1998,13(4):364-367. doi: 10.3321/j.issn:1000-3037.1998.04.012

    CrossRef Google Scholar

    [17] SHANMUGAM G. 50 years of the turbidite paradigm (1950s—1990s):deep-water processes and facies model:a critical perspective[J]. Marine and Petroleum Geology,2000,17(2):285-342. doi: 10.1016/S0264-8172(99)00011-2

    CrossRef Google Scholar

    [18] HASIOTIS T,PAPATHEODOROU G,FERENTIONS G. A high resolution approach in the recent sedimentation processes at the head of Zakynthos Canyon,western Greece[J]. Marine Geology,2005,214(1/3):49-73.

    Google Scholar

    [19] LI G,PIPER D J W,CAMPBELL D C,et al. Turbidity deposition and the development of canyons through time on an intermittently glaciated continental margin:the Bonanza Canyon system,offshore eastern Canada[J]. Marine and Petroleum Geology,2012,29(1):90-103. doi: 10.1016/j.marpetgeo.2011.08.018

    CrossRef Google Scholar

    [20] MASLIN M,OWEN M,DAY S,et al. Linking continental slope failures and climate change:testing the clathrate gun hypothesis[J]. Geology,2004,32(1):53-56. doi: 10.1130/G20114.1

    CrossRef Google Scholar

    [21] MOSHER D C, PIPER D J. Analysis of multibeam seafloor imagery of the Laurentian Fan and the 1929 Grand Banks landslide area, submarine mass movements and their consequences[M]//LYKOUSIS V, SAKELLARIOU D, LOCAT J. Submarine mass movements and their consquences. Dordrecht: Springer, 2007: 77-88.

    Google Scholar

    [22] HUVENNE V A I,DAVIES,J S. Towards a new integrated approach to submarine canyon research[J]. Deep Sea Research II:Topical Studies in Oceanography,2013,104:1-5.

    Google Scholar

    [23] HE Y L,XIE X N,KNELLER B C,et al. Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin,northern South China Sea[J]. Marine and Petroleum Geology,2013,41:264-276. doi: 10.1016/j.marpetgeo.2012.03.002

    CrossRef Google Scholar

    [24] ARZOLA R G,WYNN R B,LASTRAS G,et al. Sedimentary features and processes in the Nazare and Setubal submarine canyons,west lberian margin[J]. Marine Geology,2008,250(1/2):64-88.

    Google Scholar

    [25] SHEPARD F P, DILL R F. Submarine canyons and other sea valleys[M]. Chicago: Rand McNally, 1966: 381.

    Google Scholar

    [26] TWICHELL D C,ROBERTS D G. Morphology,distribution,and development of submarine canyons on the United States Atlantic continental slope between Hudson and Baltimore Canyons[J]. Geology,1982,10(8):408-412. doi: 10.1130/0091-7613(1982)10<408:MDADOS>2.0.CO;2

    CrossRef Google Scholar

    [27] JOBE Z R,LOWE D R,UCHYTIL S J. Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea[J]. Marine and Petroleum Geology,2010,28(3):843-860.

    Google Scholar

    [28] CHIANG C,HSIUNG K,YU H,et al. Three types of modern submarine canyons on the tectonically active continental margin offshore southwestern Taiwan[J]. Marine Geophysical Research,2020,41(1):4. doi: 10.1007/s11001-020-09403-z

    CrossRef Google Scholar

    [29] LINDENKOHL A. Geology of the sea-bottom in the approaches to New York Bay[J]. American Journal of Science,1885,29:475-480.

    Google Scholar

    [30] SPENCER J W. The submarine great canyon of the Hudson River[J]. American Journal of Science,1905,19(109):1-15.

    Google Scholar

    [31] SHEPARD F P. Landslide modifications in submarine valleys[J]. EOS,Transaction American Geophysical Union,1932,13(1):226-230. doi: 10.1029/TR013i001p00226

    CrossRef Google Scholar

    [32] BUCHER W H. Submarine valleys and the related geologic problems of the North Atlantic[J]. Geological Society America Bulletin,1940,51:489-512. doi: 10.1130/GSAB-51-489

    CrossRef Google Scholar

    [33] VEATCH A C,SMITH P A. Atlantic submarine valleys of the United States and the Congo submarine valley[J]. Geological Society of America special papers,1939,7:106.

    Google Scholar

    [34] TAYLOR B,SMOOT N C. Morphology of Bonin fore-arc submarine canyons[J]. Geology,1984,12:724-727. doi: 10.1130/0091-7613(1984)12<724:MOBFSC>2.0.CO;2

    CrossRef Google Scholar

    [35] 彭大钧,陈长民,庞雄,等. 南海珠江口盆地深水扇系统的发现[J]. 石油学报,2004(5):17-23. doi: 10.3321/j.issn:0253-2697.2004.05.004

    CrossRef Google Scholar

    [36] AMBLAS D, CANALS M, GERBER T P. The long-term evolution of submarine canyons: insights from the NW Mediterranean[M]//CERAMICOLA S, AMARO T, AMBLAS D, et al. Submarine canyon dynamics in the Mediterranean and tributary seas:an integrated geological, oceanographic and biological perspective. Monaco: CIESM Publisher, 2015: 171-181.

    Google Scholar

    [37] WILLE P C. Sound Images of the Ocean in Research and Monitoring[M]. Berlin Heidelberg: Springer, 2005.

    Google Scholar

    [38] HARRIS P T,BARRIE J V,CONWAY K W,et al. Hanging canyons of Haida Gwaii,British Columbia,Canada:fault-control on submarine canyon geomorphology along active continental margins[J]. Deep Sea Research II:Topical Studies in Oceanography,2014,104(1):83-92.

    Google Scholar

    [39] PAULL C K,CARESS D W,WILLIAM USSLER I,et al. High-resolution bathymetry of the axial channels within Monterey and Soquel submarine canyons,offshore central California[J]. Geosphere,2011,7(5):1077-1101. doi: 10.1130/GES00636.1

    CrossRef Google Scholar

    [40] HUANG Z,NICHOL S L,HARRIS P T,et al. Classification of submarine canyons of the Australian continental margin[J]. Marine Geology,2014,357:362-383. doi: 10.1016/j.margeo.2014.07.007

    CrossRef Google Scholar

    [41] AMBLAS D, CERAMICOLA S, GERBER T P, et al. Submarine Canyons and Gullies[M]//MICALLEF A, KRASTEL S, SAVINI A. Submarine Geomorphology. Switzerland: Springer Geology, 2018: 251-272.

    Google Scholar

    [42] 赵家斌,钟广法. 构造活动对海底峡谷地貌形态的影响[J]. 海洋地质前沿,2018,34(12):1-13.

    Google Scholar

    [43] 罗伟东,周娇,李学杰,等. 南海海盆盆西峡谷的形态与结构及形成演化[J]. 地球科学,2018,43(6):2172-2183.

    Google Scholar

    [44] TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616.

    Google Scholar

    [45] BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solide Earth, 1993, 98(B4): 6299-6328.

    Google Scholar

    [46] CHUANG C Y,YU H S. Morphology and canyon forming processes of upper reach of the Penghu submarine canyon off southwestern Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences,2002,13(1):91-108. doi: 10.3319/TAO.2002.13.1.91(O)

    CrossRef Google Scholar

    [47] SUPPE J. Mechanics of mountain building and metamorphism in Taiwan[J]. Geological Society of China Memoir,1981,4:67-89.

    Google Scholar

    [48] 徐尚,王英民,彭学超,等. 台湾峡谷的成因及其对沉积的控制[J]. 中国科学(地球科学),2014,44:1913-1924.

    Google Scholar

    [49] 吴庐山,鲍才旺. 南海东北部海底潜在地质灾害类型及其特征[J]. 南海地质研究,2000,12:87-101.

    Google Scholar

    [50] CHIANG C S,YU H S. Morphotectonics and incision of the Kaoping submarine canyon,SW Taiwan orogenic wedge[J]. Geomorphology,2006,80:199-213. doi: 10.1016/j.geomorph.2006.02.008

    CrossRef Google Scholar

    [51] 徐尚,王英民,彭学超,等. 台湾峡谷HD133和HD77柱状样的沉积构成和发育背景[J]. 沉积学报,2013,31(2):325-330.

    Google Scholar

    [52] 蔡庆辉. 南海北部地壳构造与深海沉积物波之研究[D]. 台北: 国立中央大学, 2006.

    Google Scholar

    [53] LEE T Y, HSU Y Y, TANG C H. Structural geology of the deformed front between 22° N and 23° N and migration of the Penghu canyon, offshore southwestern Taiwan arc-continent collision zone[R]. International Conference and Third Sino-French Symposium on Active Collision in Taiwan (extended abstract), 1995, 219-227.

    Google Scholar

    [54] YU H S,HONG E. Shifting submarine canyons and development of a foreland basin in SW Taiwan:controls of foreland sedimentation and longitudinal transport[J]. Journal of Asian Earth Sciences,2006,27(6):922-932. doi: 10.1016/j.jseaes.2005.09.007

    CrossRef Google Scholar

    [55] 丁巍伟,李家彪,李军. 南海北部陆坡海底峡谷形成机制探讨[J]. 海洋学研究,2010,28(1):26-31. doi: 10.3969/j.issn.1001-909X.2010.01.004

    CrossRef Google Scholar

    [56] 戚筱俊. 台湾海峡地形、地质及地震概述[J]. 西部探矿工程,1999,11(4):6-8.

    Google Scholar

    [57] YU H S,HUANG C S,KU J W. Morphology and possible origin of the Kaoping submarine canyon head of southwest Taiwan[J]. Acta Oceanographica Taiwanic,1991,27:40-50.

    Google Scholar

    [58] CHIANG C S,YU H S. Sedimentary erosive processes and sediment dispersal in Kaoping submarine canyon[J]. Science China Earth Sciences,2011,54(2):259-271. doi: 10.1007/s11430-010-4076-y

    CrossRef Google Scholar

    [59] YU H S,CHANG T Y. Links among slope morphology,canyon types and tectonics on passive and active margins in the northernmost South China Sea[J]. Journal of Earth Sciences,2009,20:77-84.

    Google Scholar

    [60] HSU H H,LIU C S,YU H S,et al. Sediment dispersal and accumulation in tectonic accommodation across the Gaoping Slope,offshore Southwestern Taiwan[J]. Journal of Asian Earth Sciences,2013,69:26-38. doi: 10.1016/j.jseaes.2013.01.012

    CrossRef Google Scholar

    [61] CHEN S C,TSAI C H,HSU S K,et al. Fangliao Slide:a large slope failure in the upper Kaoping Slope of southwest Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences,2018,29:17-30. doi: 10.3319/TAO.2017.06.14.01

    CrossRef Google Scholar

    [62] HSU S K,KUO J,LO C L,et al. Turbidity currents,submarine landslides and the 2006 Pingtung earthquake of SW Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences,2008,19:767-772. doi: 10.3319/TAO.2008.19.6.767(PT)

    CrossRef Google Scholar

    [63] 孙珍,庞雄,钟志洪,等. 珠江口盆地白云凹陷新生代构造演化动力学[J]. 地学前缘,2005,12(4):489-498. doi: 10.3321/j.issn:1005-2321.2005.04.018

    CrossRef Google Scholar

    [64] 苏明,解习农,王振峰,等. 南海北部琼东南盆地中央峡谷体系沉积演化[J]. 石油学报,2013,34(3):467-478. doi: 10.7623/syxb201303007

    CrossRef Google Scholar

    [65] ZHU J,LI J,SUN Z,et al. Crustal thinning and extension in the northwestern continental margin of the South China Sea[J]. Geological Journal,2016,51:286-303. doi: 10.1002/gj.2753

    CrossRef Google Scholar

    [66] 陈泓君,蔡观强,罗伟东,等. 南海北部陆坡神狐海域峡谷地貌形态特征与成因[J]. 海洋地质与第四纪地质,2012,32(5):19-26.

    Google Scholar

    [67] HAN X B, LI J B, CHU F Y, et al. Geomorphology and tectonic interpretation of Zhujiang Submarine Canyon, in the northern South China Sea[C]//OCEANS'10 IEEE. Sydney: 2010: 1-4.

    Google Scholar

    [68] 金庆焕. 南海地质与油气资源[M]. 北京: 地质出版社, 1989: 84-111.

    Google Scholar

    [69] 柳保军,袁立忠,申俊,等. 南海北部陆坡古地貌特征与13.8 Ma以来珠江深水扇[J]. 沉积学报,2006,24(4):476-482. doi: 10.3969/j.issn.1000-0550.2006.04.003

    CrossRef Google Scholar

    [70] ZHU M,GRAHAM S,PANG X,et al. Characteristics of migrating submarine canyons from the middle Miocene to present:implications for paleoceanographic circulation,northern South China Sea[J]. Marine and Petroleum Geology,2010,27:307-319. doi: 10.1016/j.marpetgeo.2009.05.005

    CrossRef Google Scholar

    [71] 郑晓东,朱明,何敏,等. 珠江口盆地白云凹陷荔湾深水扇砂体分布预测[J]. 石油勘探与开发,2007,34(5):529-533. doi: 10.3321/j.issn:1000-0747.2007.05.003

    CrossRef Google Scholar

    [72] 丁巍伟,李家彪,李军,等. 南海珠江口外海底峡谷形成的控制因素及过程[J]. 热带海洋学报,2013,32(6):63-72. doi: 10.3969/j.issn.1009-5470.2013.06.010

    CrossRef Google Scholar

    [73] 毛凯楠. 珠江口外峡谷体系内部构成特征及沉积模式[D]. 武汉: 中国地质大学(武汉), 2015.

    Google Scholar

    [74] ANIMA R J,EITTREIM S L,EDWARDS B D,et al. Nearshore morphology and late Quaternary geologic framework of the northern Monterey Bay Marine Sanctuary[J]. California Marine Geology,2002,181(1/3):35-54.

    Google Scholar

    [75] EITTREIM S L,ANIMA R J,STEVENSON A J. Seafloor geology of the Monterey Bay area continental shelf[J]. Marine Geology,2002,181(1):3-34.

    Google Scholar

    [76] BARBEAU D L,DUCEA M N,GEHRELS G E,et al. U-Pb detrital-zircon geochronology of northern Salinian basement and cover rocks[J]. Geological Society of America Bulletin,2005,117(3/4):466-481.

    Google Scholar

    [77] GREENE H G, HICKS K R. Ascension-Monterey Canyon system: history and development[M]//GARRISON R E. Geology and tectonics of the central California coast region:San Francisco to Monterey. California, College Station: Pacific Section AAPG, 1990: 229-250.

    Google Scholar

    [78] GREENE H G,MAHER N M,PAULL C K. Physiography of the Monterey Bay National Marine Sanctuary and implications about continental margin development[J]. Marine Geology,2002,181(1):55-82.

    Google Scholar

    [79] BEST T C, GRIGGS G B. A sediment budget for the Santa cruz littoral cell[M]. California: Society for Sedimentary Geology Special Publication, 1991.

    Google Scholar

    [80] COVAULT J A,NORMARK W R,ROMANS B W,et al. Highstand fans in the California borderland:the overlooked deep-water depositional system[J]. Geology,2007,35:783-786. doi: 10.1130/G23800A.1

    CrossRef Google Scholar

    [81] PAULL C K,USSLER W,GREENE H G,et al. Caught in the act:the 20 December 2001 gravity flow event in Monterey Canyon[J]. Geo-Marine Letters,2003,22(4):227-232.

    Google Scholar

    [82] DARTNELL P, MAIER K L, ERDEY M D, et al. California State Waters Map Series-Monterey Canyon and Vicinity[R]. U. S. Geological Survey Open-File Report 2016-1072, 2016.

    Google Scholar

    [83] INMAN D L,JENKINS S A. Climate change and the episodicity of sediment flux of small California rivers[J]. The Journal of Geology,1999,107(3):251-270. doi: 10.1086/314346

    CrossRef Google Scholar

    [84] FARNSWORTH K L, WARRICK J A. Sources, dispersal, and fate of fine sediment supplied to coastal California[R]. U. S. Geological Survey Scientific Investigation Report 2007-5157, 2007.

    Google Scholar

    [85] 徐景平. 科学与技术并进:近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展,2013,28(5):552-558. doi: 10.11867/j.issn.1001-8166.2013.05.0552

    CrossRef Google Scholar

    [86] CONRAD T A,NIELSEN S G,PEUCKER-EHRENBRINK B,et al. Reconstructing the evolution of the submarine Monterey Canyon System from Os,Nd,and Pb isotopes in hydrogenetic Fe-Mn crusts[J]. Geochemistry Geophysics Geosystems,2017,18(11):3946-3963. doi: 10.1002/2017GC007071

    CrossRef Google Scholar

    [87] MAIER K L,JOHNSON S Y,PATRICK H. Controls on submarine canyon head evolution:Monterey Canyon,offshore central California[J]. Marine Geology,2018,404:24-40. doi: 10.1016/j.margeo.2018.06.014

    CrossRef Google Scholar

    [88] KUENEN P H. Experiments in connection with Daly’s hypothesis on the formation of submarine canyons[J]. Leidse Geologische Mededelingen,1937,8:327-335.

    Google Scholar

    [89] LASTRAS G,ARZOLA R G,MASSON D G,et al. Geomorphology and sedimentary features in the central portuguese submarine canyons,Western Iberian Margin[J]. Geomorphology,2009,103(3):310-329. doi: 10.1016/j.geomorph.2008.06.013

    CrossRef Google Scholar

    [90] MOUNTJOY J J,HOWARTH J D,ORPIN A R,et al. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins[J]. Science Advances,2018,4:3748. doi: 10.1126/sciadv.aar3748

    CrossRef Google Scholar

    [91] 周家乐. 海底峡谷成因新探[J]. 海洋湖沼通报,1991(4):53-56.

    Google Scholar

    [92] MULLENBACH B L,NITTROUER C A,PUIG P,et al. Sediment deposition in a modern submarine canyon:Eel Canyon,northern Califomia[J]. Marine Geology,2004,211(1):101-119.

    Google Scholar

    [93] PALANQUES A,EL KHATAB M,PUIG P,et al. Downward particle fluxes in the Guadiarosubmarine canyon depositional system (north-western Alboran Sea),a river flood dominated system[J]. Marine Geology,2005,220(1/4):23-40.

    Google Scholar

    [94] SOBARZO M,FIGUEROA M,DJURFCLDT L. Upwelling of subsurface water into the rim of the Biobio submarine canyon as a response to surface winds[J]. Continental Shelf Research,2001,21(3):279-299. doi: 10.1016/S0278-4343(00)00082-0

    CrossRef Google Scholar

    [95] 朱超祁,贾永刚,刘晓磊,等. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质,2015,35(6):153-163.

    Google Scholar

    [96] GREEN A,UKEN R. Submarine landsliding and canyon evolution on the northern KwaZulu-Natal continental shelf,South Africa,SW Indian Ocean[J]. Marine Geology,2008,254(3/4):152-170.

    Google Scholar

    [97] LAURSEN J,NORMARK W R. Late Quaternary evolution of the San Antonio Submarine Canyon in the central Chile forearc(~33°S)[J]. Marine Geology,2002,188(3/4):365-390.

    Google Scholar

    [98] CERAMICOLA S, PRAEG D, COSTE M, et al. Submarine Mass-Movements Along the Slopes of the Active Ionian Continental Margins and Their Consequences for Marine Geohazards (Mediterranean Sea)[M]//KRASTEL S, BEHRMANN J H, VÖLKER D, et al. Submarine mass movements and their consequences. Heidelberg: Springer, Cham, 2014, 37: 295-306.

    Google Scholar

    [99] CLIFT P D,GIOSAN L,HENSTOCK T J,et al. Sediment storage and reworking on the shelf and in the Canyon of the Indus River-Fan System since the last glacial maximum[J]. Basin Research,2014,26(1):183-202. doi: 10.1111/bre.12041

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(5615) PDF downloads(108) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint