[1] |
殷鸿福, 张克信. 东昆仑造山带的一些特点[J]. 地球科学-中国地质大学学报, 1997, 22(4): 339-342.
Google Scholar
|
[2] |
任纪舜. 中国及邻区大地构造图(1:5000000)[M]. 北京: 地质出版社, 1999.
Google Scholar
|
[3] |
姜春发, 王宗起, 李锦轶. 中央造山带开合构造[M]. 北京: 地质出版社, 2000: 1-154.
Google Scholar
|
[4] |
莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414.
Google Scholar
|
[5] |
李荣社, 计文化, 赵振明, 等. 昆仑早古生代造山带研究进展[J]. 地质通报, 2007, 20(4): 374-382.
Google Scholar
|
[6] |
肖庆辉, 王涛, 邓晋福, 等. 中国典型造山带花岗岩与大陆地壳生长研究[M]. 北京: 地质出版社, 2009: 504-527.
Google Scholar
|
[7] |
刘成东, 莫宣学, 罗照华, 等. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据[J]. 科学通报, 2004, 49(6): 592-602.
Google Scholar
|
[8] |
刘成东. 东昆仑造山带东段花岗岩岩浆混合作用[M]. 北京: 地质出版社, 2008.
Google Scholar
|
[9] |
谌宏伟, 罗照华, 莫宣学, 等. 东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J]. 岩石矿物学杂志, 2006, 25(1): 25-32.
Google Scholar
|
[10] |
许志琴, 李海兵, 杨经绥, 等. 造山的高原—青藏高原巨型造山拼贴体和造山类型[J]. 地学前缘, 2006, 13(4): 1-16.
Google Scholar
|
[11] |
陈国超. 东昆仑造山带(东段)晚古生代-早中生代花岗质岩石特征、成因及地质意义[D]. 长安大学博士学位论文, 2014.
Google Scholar
|
[12] |
郭正府, 邓晋福, 徐志琴, 等. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程[J]. 现代地质, 1998, 12(3): 344-352.
Google Scholar
|
[13] |
刘成东, 莫宣学, 罗照华, 等. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据[J]. 科学通报, 2004, 49(6): 592-602.
Google Scholar
|
[14] |
杨经绥, 徐志琴, 李海兵, 等. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J]. 岩石矿物学杂志, 2005, 24(5): 369-379.
Google Scholar
|
[15] |
莫宣学. 青藏高原岩浆岩成因研究: 成果与展望[J]. 地质通报, 2009, 28(12): 1694-1702.
Google Scholar
|
[16] |
丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(2): 665-678.
Google Scholar
|
[17] |
古凤宝. 东昆仑华力西期-印支期花岗岩组合及构造环境[J]. 青海地质, 1994, 6(2): 18-26.
Google Scholar
|
[18] |
罗照华, 邓恶福, 曹水清, 等.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化[J].现代地质, 1999, 13(1): 51-56.
Google Scholar
|
[19] |
袁万明, 莫宣学, 喻学惠, 等. 东昆仑印支期区域构造背景的花岗岩记录[J]. 地质论评, 2000, 46(2): 203-211.
Google Scholar
|
[20] |
刘成东, 莫宣学, 罗照华, 等. 东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征[J]. 地球学报, 2003, 24(6): 584-588.
Google Scholar
|
[21] |
赵振明, 马振东, 王秉璋, 等. 东昆仑早泥盆世碰撞造山的侵入岩证据[J]. 地质论评, 2008, 54(1): 47-56.
Google Scholar
|
[22] |
孙雨, 裴先治, 丁仨平, 等. 东昆仑哈拉尕吐岩浆混合岩浆岩: 来自锆石U-Pb年代学的证据[J]. 地质学报, 2009, 83(7): 1000-1010.
Google Scholar
|
[23] |
Xiong F H, Ma C Q, Zhang J Y, et al. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinhai-Tibet Plateau: implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J]. Mineralogy and Petrology, 2012, 104: 211-224.
Google Scholar
|
[24] |
王学良. 东昆仑东段香加南山花岗岩体地质特征及其形成年代研究[D]. 长安大学硕士学位论文, 2012.
Google Scholar
|
[25] |
张刚. 东昆仑造山带东段哈拉尕吐花岗岩体地质特征、形成时代及地质意义[D]. 长安大学硕士学位论文, 2012.
Google Scholar
|
[26] |
李佐臣, 裴先治, 李瑞保, 等, 东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义[J]. 地质学报, 2013, 87(8): 1089-1103.
Google Scholar
|
[27] |
Jackson S E, Person N J, Griffin W L, et al. The application of laser ablation-inductively couple plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geoligy, 2004, 211:59-79
Google Scholar
|
[28] |
Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geoligy, 2002, 192:59-79
Google Scholar
|
[29] |
Ludwig K R. Isoplot 3.0 Age chronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2003,4: 1-70.
Google Scholar
|
[30] |
Chen F K, Hegner E, Todt W. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: Evidence for a Cambrian magmatic arc[J]. International Journal of Earth Sciences(Geol Rundsch), 2000, 88: 791-802.
Google Scholar
|
[31] |
Chen F K, Siebel W, Satir M, et al. Geochronology of the Karadere basement(NW Turkey)and implications for the geological evolution of the Istanbul zone[J]. International Journal of Earth Sciences (Geol Rundsch), 2002, 91: 469-481.
Google Scholar
|
[32] |
Belousova E A, Griffin W L, O' Reillv S Y, et al. Igneous zircon: Irace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.
Google Scholar
|
[33] |
吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1602.
Google Scholar
|
[34] |
Siebel W, Blaha U, Chen F K, et al. Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif[C]//Maniar P D, Piccoli P M. Tectionic discrimination in of granitoids. Geological Society of America Bulletin, 1989, 1: 635-643.
Google Scholar
|
[35] |
Maniar P D, Piccoli P M. Tectionic discrimination in of granitoids[J]. Geological Society of America Bulletin, 1989, 1: 635-643.
Google Scholar
|
[36] |
Rollinson H R. Using geochemical data: evaluation, presentation, interpreation[M]. Longman Group UK Ltd, New York, 1993: 1-352.
Google Scholar
|
[37] |
Boynton W V. Geochemistry of the rare earth elements: meteorite studies[C]//Henderson Pd. Rare earth element geochemistry. Amsterdam Elservier, 1984: 63-114.
Google Scholar
|
[38] |
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Sunders A D, Norry M J. Magmatism in the Ocean Basins. London: Geol. Soc. Spec. Publ., 1989, 42: 313-345.
Google Scholar
|
[39] |
王德滋, 刘昌实. 桐庐I型和相山S型两类碎斑熔岩对比[J]. 岩石学报, 1993, 9(1): 44-54.
Google Scholar
|
[40] |
Wilson M. Igneous Petrogenesis[M]. Unwin Hyman Press, London, 1989: 295-323.
Google Scholar
|
[41] |
Barth M G, William F, McDonough W F, et al. Tracking the bugtet of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165: 197-213.
Google Scholar
|
[42] |
Chappell B W, White A J R. I-and S-type granites in the Lachland Fold Belt[J]. Mineralogy MagazineTransactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 1-26.
Google Scholar
|
[43] |
Patino Dounce A E. What do experiments tell us about the relative contribution of crust and mantle to the origins of granitic magma?[C]//Castro A, Fernandez C, Vigneresse J L. Understanding Granites: Intergrating New and Classical Techniques. Geological Society of London, Special Publication, 1999, 168: 55-75.
Google Scholar
|
[44] |
Taylor S R, Mclennan S M. The continental Crust: Its composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985: 1-132.
Google Scholar
|
[45] |
McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 1991, 102(3/4): 358-374.
Google Scholar
|
[46] |
Luhr J F, Haldar D. Barren Island Volcano(NE Indian Ocean): Island-arc high-alumina basalts produced by troctolite contamination[J]. Journal of Volcanology and Geothermal Rresearch, 2006, 149(3/4): 177-212.
Google Scholar
|
[47] |
Donnelly K E, Goldstein S L, Langmuir C H, et al. Origin of enriched ocean ridge basalts and implications for mandtle dynamics[J]. Earth and Planetary Science Letters, 2004, 226(3/4): 347-366.
Google Scholar
|
[48] |
Wyllie P J, Cox K G, Biggar G M. The hait of apatite in synthetic systems and igneous rocks[J]. Journal of Petrology, 1962, 3(2): 238-242.
Google Scholar
|
[49] |
Didier J, Ferrand C. Contribution of enclave studies to the under-standing of origin and evolution of granitic magmas[J]. Geologische Rundschau, 1987, 76(1): 41-50.
Google Scholar
|
[50] |
Barbarin B, Didier J. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83(1/2): 145-153.
Google Scholar
|
[51] |
Donaire T, Pascual E, Pin C, et al. Microgranular enclaves as evidence of rapid cooling in granitoid rocks: the case of the Los Pedroches granodiorite, Iberian Massif, Spain[J]. Contributions to Mineralogy and Petrology, 2005, 149(3): 247-265.
Google Scholar
|
[52] |
White R V, Tarney J, Kerr A C, et al. Modification of an oceanic plateau, Aruba, Dutch Caribbean: implications for the generation of continental crust[J]. Lithos, 1999, 46: 43-68.
Google Scholar
|
[53] |
Li R B, Pei X Z, Li Z C, et al. Regional tectonic transformation in East Kunlun Orogenic Belt in Early Paleozoic: constraints form the geochronology and geochemistry of Helegangnaren Alkalifeldspar granite[J]. Acta Geologica Sinica, 2013, 87(2): 333-345.
Google Scholar
|
[54] |
陈亮, 孙勇, 柳小明, 等. 青海省德尔尼蛇绿岩的地球化学特征及其大地构造意义[J]. 岩石学报, 2000, 16(1): 106-110.
Google Scholar
|
[55] |
边千韬, 罗小全, 李涤徽, 等. 青海省阿尼玛卿带布青山蛇绿混杂岩的地球化学性质及形成环境[J]. 地质学报, 2001, 75(1): 45-55.
Google Scholar
|
[56] |
杨经绥, 王希斌, 史仁灯, 等. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳[J]. 中国地质, 2004, 31(3): 225-239.
Google Scholar
|
[57] |
刘战庆, 裴先治, 李瑞保, 等. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J]. 地质学报, 2011, 85(2): 186-194.
Google Scholar
|
[58] |
杨杰, 裴先治, 李瑞保, 等. 东昆仑南缘布青山地区哈尔郭勒玄武岩地球化学特征及其地质意义[J]. 中国地质, 2014, 41(2): 335-350.
Google Scholar
|
[59] |
柴耀楚, 冯秉贵, 杨经绥. 东昆仑中段东西大滩花岗岩带的基本特征及其成因的探讨[J]. 青藏高原地质文集, 1984, 15: 78-90.
Google Scholar
|
[60] |
Briqueu L, Bougault H, Joron J L. Quantification of Nb, Ta, Ti and V anomalies in Magmas associated with subduction zones:Petrogenetic implications[J]. Earth and Planetary Science Letters, 1984, 68(2): 297-308.
Google Scholar
|
[61] |
Pearce J A, Harris NBW, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Joumal of Petrology, 1984, 25(4): 956-983.
Google Scholar
|
[62] |
莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414.
Google Scholar
|
[63] |
刘成东, 张文秦, 莫宣学, 等. 东昆仑约格鲁岩体暗色微粒包体特征及成因[J]. 地质通报, 2002, 21(11): 739-744.
Google Scholar
|
[64] |
陈广俊, 孙丰月, 李碧乐, 等. 东昆仑沟里地区暗色包体及其寄主岩石地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2014, 44(3): 892-904.
Google Scholar
|