2016 Vol. 35, No. 8
Article Contents

WANG Xiaoyu, MAO Jingwen, CHENG Yanbo, LIU Peng, ZHANG Xingkang. Zircon U-Pb age, geochemistry and Hf isotopic compositions of quartzdiorite from the Xinliaodong Cu polymetallic deposit in eastern Guangdong Province[J]. Geological Bulletin of China, 2016, 35(8): 1357-1375.
Citation: WANG Xiaoyu, MAO Jingwen, CHENG Yanbo, LIU Peng, ZHANG Xingkang. Zircon U-Pb age, geochemistry and Hf isotopic compositions of quartzdiorite from the Xinliaodong Cu polymetallic deposit in eastern Guangdong Province[J]. Geological Bulletin of China, 2016, 35(8): 1357-1375.

Zircon U-Pb age, geochemistry and Hf isotopic compositions of quartzdiorite from the Xinliaodong Cu polymetallic deposit in eastern Guangdong Province

  • The Xinliaodong Cu polymetallic deposit is a newly-discovered copper ore deposit in eastern Guangdong Province. In this paper, zircon U-Pb age, geochemistry and zircon Hf isotope of the ore-related quartz-diorite from the Xinliaodong Cu polymetallic ore district were studied to constrain its geochronology and petrogenesis. The zircon LA-ICP-MS dating yielded a concordant age of 161±1Ma (n=25, MSWD=0.57), which is interpreted as the petrogenic age of quartz-diorite. Geochemical data show that the quartz-diorite is magnesium-enriched in composition (MgO=4.53%~4.91%) with moderate content of alkali (Na2O+K2O=3.99%~5.05%). It is a metaluminous granite and belongs to the calc-alkaline series. Its REE and trace elements are characterized by enrichment of LREE and large ion lithophile elements (K, Rb, Ba, Th and U) and depletion of HREE and high-field strength elements (Nb, Ta, Ti and P), with slightly weak negative anomalies of Eu (δEu=0.68~0.76). The results of the electron microprobe analysis show that the biotite from the quartz-diorite belongs to magnesian biotite, whereas the zoned plagioclase belongs to labradorite. The Hf isotope shows that the εHf (t) values of the quartze-diorite range from -5.8 to 2.7, with tDM2 ages between 1.03Ga and 1.58Ga. Geochemistry and zircon Hf isotopic compositions indicate that the parental magmas of the quartz-diorite are rather complex. The diagenetic mass of the pluton was derived from the source of crust-mantle mixture and it might have originated from partial melting of a subducted slab which reacted with mantle wedge peridotites. Besides, the magma was intermingled with ancient crustal material during magmatic ascent. According to petrogeochemistry, mineral chemistry and Hf isotope, combined with the tectonic evolution of the eastern Guangdong Province as well as previous achievements, the authors infer that the quartz-diorite was generated in an active continental margin setting triggered by slab subduction.
  • 加载中
  • [1] 毛景文,谢桂青,郭春丽,等.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报,2008,14(4):510-526.

    Google Scholar

    [2] 毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区[J].矿床地质,1999,18(4):291-299.

    Google Scholar

    [3] 毛景文,王志良.中国东部大规模成矿时限及其动力学背景的初步探讨[J].矿床地质,2000,19(4):289-296.

    Google Scholar

    [4] 毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘,2004,11(1):45-55.

    Google Scholar

    [5] 毛景文,谢桂青,郭春丽,等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报,2007,23(10):2329-2338.

    Google Scholar

    [6] 毛景文,陈懋弘,袁顺达,等.华南地区钦杭成矿带地质特征和矿床时空分布规律[J].地质学报,2011,85(5):636-658.

    Google Scholar

    [7] 毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188.

    Google Scholar

    [8] 华仁民,毛景文.试论中国东部中生代成矿大爆发[J].矿床地质,1999,18(4):300-308.

    Google Scholar

    [9] 华仁民,陈培荣,张文兰,等.华南中、新生代与花岗岩类有关的成矿系统[J].中国科学(D辑),2003,33(4):335-343.

    Google Scholar

    [10] 华仁民,陈培荣,张文兰,等.论华南地区中生代3次大规模成矿作用[J].矿床地质,2005,24(2):99-107.

    Google Scholar

    [11] 华仁民,李光来,张文兰,等.华南钨和锡大规模成矿作用的差异及其原因初探[J].矿床地质,2010,29(1):9-23.

    Google Scholar

    [12] 舒良树.华南构造演化的基本特征[J].地质通报,2012,31(7):1035-1053.

    Google Scholar

    [13] 程彦博,童祥,武俊德,等.华南西部地区晚中生代与W-Sn矿有关花岗岩的年代学格架及地质意义[J].岩石学报,2010,26(3):809-818.

    Google Scholar

    [14] 杨明桂,黄水保,楼法生,等.中国东南陆区岩石圈结构与大规模成矿作用[J].中国地质,2009,36(3):528-543.

    Google Scholar

    [15] 郑伟,陈懋弘,赵海杰,等.广东鹦鹉岭钨多金属矿床中黑云母花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素特征及其地质意义[J].岩石学报,2013,29(12):4121-4135.

    Google Scholar

    [16] 刘鹏,程彦博,毛景文,等.粤东田东钨锡多金属矿床花岗岩锆石U-Pb年龄、Hf同位素特征及其意义[J].地质学报,2015,89(5):1244-1257.

    Google Scholar

    [17] 王小雨,毛景文,程彦博,等.粤东新寮岽铜多金属矿床绿泥石特征及其地质意义[J].岩石矿物学杂志,2014,33(5):885-905.

    Google Scholar

    [18] 徐晓春.粤东地区中生代岩浆作用和金属成矿的地球化学研究[D].合肥工业大学博士学位论文,1993:1-198.

    Google Scholar

    [19] 徐晓春,岳书仓.粤东中生代火山-侵入杂岩的地壳深熔成因——Pb-Nd-Sr多元同位素体系制约[J].地质论评,1999,45(增刊):829-835.

    Google Scholar

    [20] 黄卉,马东升,陆建军,等.湘东邓阜仙二云母花岗岩锆石U-Pb年代学及地球化学研究[J].矿物学报,2013,33(2):245-255.

    Google Scholar

    [21] Ludwig K R.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M].Berkeley:Geochronology Center Special Publication,2003:4-70.

    Google Scholar

    [22] 侯可军,李延河,邹天人,等.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2594-2604.

    Google Scholar

    [23] Elhlou S,Belousova E,Griffin W L,et al.Trace element and isotopic composition of GJ-red zircon standard by laser ablation[J].Geochimica et Cosmochimica Acta,2006,70(18):407-421.

    Google Scholar

    [24] Qi L,Hu J,Gregoire D C.Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J].Talanta,2000,51(3):507-513.

    Google Scholar

    [25] 吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.

    Google Scholar

    [26] Compston W,Williams I S,Kirschvink I L.Zircon U-Pb ages for the Early Cambrian timescale[J].Geological society of London,1992,149(2):171-184.

    Google Scholar

    [27] Maniar P D,Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,1989,101(5):635-643.

    Google Scholar

    [28] Rollinson H R.Using Geochemical Data:Evaluation,Presentation,Interpretation[M].New York:Longman Scientific and Technical,1993:1-352.

    Google Scholar

    [29] Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and process[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.Geol.Soc.Spec.Publ.,1989,42(1):313-345.

    Google Scholar

    [30] 郑巧荣.由电子探针分析值计算Fe3+和Fe2+[J].矿物学报,1983,(1):55-62.

    Google Scholar

    [31] 马昌前,杨坤光,汤仲华,等.花岗岩类岩浆动力学理论方法及鄂东花岗岩类例析[M].武汉:中国地质大学出版社,1994:77-78.

    Google Scholar

    [32] Foster M D.Interpretation of the composition of trioctahedral micas[J].U.S.Geol.Surv.Prof.Paper.,1960,354-B:11-49.

    Google Scholar

    [33] 吴平霄,吴金平,肖文丁,等.斜长石环带的成因机制[J].地质地球化学,1997,4:40-49.

    Google Scholar

    [34] Wiebe R A.Plagioclase stratigraphy:a record of magmatic conditions and events in a granite stock[J].American Journal of Science,1986,266:690-703.

    Google Scholar

    [35] Holness M B.Spherulitie textures formed during crystallization of partially melted arkose[J].Rum,Scotland,Geol.Mag.,2002,139(6):651-663.

    Google Scholar

    [36] 梅芳.宁镇地区中酸性岩浆岩中斜长石的矿物学特征[J].科技信息,2012,17:11-17.

    Google Scholar

    [37] Watson E B,Harrison T M.Zircon saturation revisited:Temperature and composition effects in avariety of crustal magma types[J].Earth Planet.Sci.Lett,1983,64:295-304.

    Google Scholar

    [38] Kinny P D,Mass R.Lu-Hf and Sm-Nd isotope systems in zircon[C]//Hanchar J M,Hoskin P W O.Zircon.Rev.Mineral.Geochem.,2003,53:327-341.

    Google Scholar

    [39] 吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220.

    Google Scholar

    [40] Vervoort J D,Pachelt P J,Gehrels G E,et al.Constraints on early Earth differentiation from hafnium and neodymium isotopes[J].Nature,1996,379(6566):624-627.

    Google Scholar

    [41] Amelin Y,Lee D C,Halliday A N.Early-Middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J].Geochimica et Cosmochimica Acta,2000,64(24):4205-4225.

    Google Scholar

    [42] Watson E B,Harrison T M.Zircon thermometer reveals minimum melting conditions on earliest Earth[J].Science,2005,308(5723):841-844.

    Google Scholar

    [43] Miller C F,McDowell S M,Mapes R W.Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J].Geology,2003,31(6):529-532.

    Google Scholar

    [44] Henry D J,Guidotti C V,Thomson J A.The Ti saturation surface for low to medium pressure metapelitic biotites:Implications for geothemometry and Ti-substitution mechanisms[J].Am.Mineral.,2005,90:316-328.

    Google Scholar

    [45] 高飞,庞雅庆,林锦荣,等.诸广棉花坑铀矿床花岗岩中黑云母成分特征及其成岩成矿意义[J].高校地质学报,2013,19(增刊):274-275.

    Google Scholar

    [46] Wones D R,Eugster H P.Stability of biotite:experiment,theory,and application[J].Am.Mineral,1965,50:1228-1272.

    Google Scholar

    [47] Eugster H P,Wones D R.Stability relations of the ferruginous biotite,annite[J].J.Petrol.,1962,3(1):2648-2697.

    Google Scholar

    [48] Ishihara S.The magnetite-series and ilmenite-series granitic rocks[J].Mining Geology,1977,27:293-305.

    Google Scholar

    [49] 吕志成,段国正,董光华.大兴安岭中南段燕山期三类不同成矿花岗岩中黑云母的化学成分特征及其成岩成矿意义[J].矿物学报,2003,23(2):177-184.

    Google Scholar

    [50] Kelemen P B,Hangh K,Greenem A R.One view of the geochemistry of subduction-related magmatic arcs,with an emphasis on primitive andesite and lower crust[C]//Rudnick R L.Treatise On Geochemistry,2003,3:593-659.

    Google Scholar

    [51] Li J W,Zhao X F,Zhou M F,et al.Origin of the Tongshankou porphyry-skarn Cu-Mo deposit,eastern Yangtze craton,Eastern China:geochronological,geochemical,and Sr-Nd-Hf isotopic constraints[J].Miner.Deposita.,2008,43:315-336.

    Google Scholar

    [52] Wu F Y,Jahn B M,Wilde S A,et al.Highly fractionated I-type granites in NE China (I):Geochronology and petrogenesis[J].Lithos,2003,66:241-273.

    Google Scholar

    [53] Eby G N,Wooley A R,Din V,et al.Geochemistry and petrogenesis of nepheline syenite:Kasungu-Chipala,Homba,and Ulindi nepheline syenite intrusions,north Nyasa alkaline province,Malawi[J].J.Petrol.,1998,39:1405-1424.

    Google Scholar

    [54] 汪欢,王建平,刘家军,等.南秦岭西坝花岗质岩体矿物学特征及成岩意义[J].现代地质,2011,25(3):489-502.

    Google Scholar

    [55] 丁孝石.西藏中南部花岗岩类中云母矿物标型特征及其地质意义[J].中国地质科学院矿床地质研究所所刊,1988,1:33-50.

    Google Scholar

    [56] 周作侠.湖北丰山洞岩体成因探讨[J].岩石学报,1986,(1):59-70.

    Google Scholar

    [57] Cheng Y B,Mao J W.Age and geochemistry of granites in Gejiu area,Yunnan province,SW China:Constraints ont their petrogenesis and tectonic setting[J].Lithos,2010,120:258-276.

    Google Scholar

    [58] 邓晋福,莫宣学,赵海玲,等.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境[J].矿床地质,1999,18(4):309-315.

    Google Scholar

    [59] 王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化[J].地学前缘,2003,10(3):209-220.

    Google Scholar

    [60] 徐夕生,谢昕.中国东南部晚中生代-新生代玄武岩与壳幔作用[J].高校地质学报,2005,11(3):318-334.

    Google Scholar

    [61] 董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释[J].地质学报,2007,81(11):1449-1461.

    Google Scholar

    [62] 徐先兵,张岳桥,贾东,等.华南早中生代大地构造过程[J].中国地质,2009,36(3):573-593.

    Google Scholar

    [63] 张岳桥,董树文,李建华,等.华南中生代大地构造研究新进展[J].地球学报,2012,33(3):257-279.

    Google Scholar

    [64] 杨宗永,何斌.华南侏罗纪构造体质转换:碎屑锆石U-Pb年代学证据[J].大地构造与成矿,2013,37(4):580-591.

    Google Scholar

    [65] Xu X S,Dong C W,Li W X,et al.Late Mesozoic intrusive complexes in the coastal area of Fujian,SE China:The significance of the gabbro-diorite-granite association[J].Lithos,1999,46(2):299-315.

    Google Scholar

    [66] Zhou X M,Li W X.Origin of Late Mesozoic igneous rocks in southeastern China:Implications for lithosphere subduction and underplating of mafic magmas[J].Tectonophysics,2000,326(3/4):269-287.

    Google Scholar

    [67] 汪洋.湘南早中侏罗世花岗闪长岩的岩石化学特征、构造背景及地质意义[J].北京地质,2003,15(3):1-7.

    Google Scholar

    [68] 李晓峰,Watanabe Y,华仁民,等.华南地区中生代Cu-(Mo)-W-Sn矿床成矿作用与洋岭/转换断层俯冲[J].地质学报,2008,82(5):625-640.

    Google Scholar

    [69] 孙卫东,凌明星,杨晓勇,等.洋脊俯冲与斑岩铜金矿成矿[J].中国科学:地球科学,2010,40(2):127-137.

    Google Scholar

    [70] 梁锦,周永章,李红中,等.钦-杭结合带斑岩型铜矿的基本地质特征及成因分析[J].岩石学报,2012,28(10):3361-3372.

    Google Scholar

    [71] Abdel-Ralman M A.Nature of biotites from alkaline,calc-alkaline and peraluminous magmas[J].J.Petrol.,1994,35(2):525-541.

    Google Scholar

    [72] Batchelor R A,Bowden P.Petrogenetic interpretation of granitoid rock series using multi-cationic parameters[J].Chemical Geology,1985,48(1):43-55.

    Google Scholar

    [73] Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].J.Petrol.,1984,25:956-983.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1176) PDF downloads(107) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint