2016 Vol. 35, No. 8
Article Contents

YU Yunpeng, HU Peiyuan, LI Cai, XIE Chaoming, FAN Jianjun, XU Wei, LIU JinHeng. The petrology and geochemistry of Early Cretaceous ocean island volcanic rocks in the middle-western segment of Bangong Co-Nujiang suture zone[J]. Geological Bulletin of China, 2016, 35(8): 1281-1290.
Citation: YU Yunpeng, HU Peiyuan, LI Cai, XIE Chaoming, FAN Jianjun, XU Wei, LIU JinHeng. The petrology and geochemistry of Early Cretaceous ocean island volcanic rocks in the middle-western segment of Bangong Co-Nujiang suture zone[J]. Geological Bulletin of China, 2016, 35(8): 1281-1290.

The petrology and geochemistry of Early Cretaceous ocean island volcanic rocks in the middle-western segment of Bangong Co-Nujiang suture zone

  • Zhonggang ocean island lies in the middle-western segment of Bangong Co-Nujiang suture zone. Previous researches mainly focused on the eastern segment of Zhonggang ocean island, with no attention paid to Dongco area in the middle segment. In this paper, the authors studied the rock association and whole rock geochemistry of Zhonggang ocean island and analyzed the source area and structural environment of the island volcanic rocks. Eight basalt and eight basaltic andesite geochemical samples were collected along a transect at the middle part of Zhonggang ocean island in the north of Dongco. The major element characteristics of these two kinds of rocks indicate that basalt is alkali basalt enriched in Ti, and the trace element characteristics show that both of them are enriched in Nb and Ta. The REE patterns and the trace element spider diagram are similar to features of typical OIB. Chemical compositions of Zhonggang ocean island basalts and basaltic andesites suggest that they probably came from the same magma source, and both of them had mantle source with OIB characteristics; the depletion of Cr, Ni indicates that fractional crystallization of olivine and augite occurred during the rockforming process. The ocean island was formed in an oceanic island tectonic environment on the base of the oceanic crust.
  • 加载中
  • [1] 潘桂棠.全球洋-陆转换中的特提斯演化[J].特提斯地质,1994,18:23-40.

    Google Scholar

    [2] 张玉修.班公湖-怒江缝合带中西段构造演化[D].中国科学院广州地球化学研究所博士学位论文,2007:1-256.

    Google Scholar

    [3] 潘桂棠,朱弟成,王立全,等.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J].地学前缘,2004,11(4):371-382.

    Google Scholar

    [4] Yin A,Harrison M T.Geologic evolution of the Himalayan-Tibetan orogen[J].Annual Review of Earth&Planetary Science,2000,28(1):211-280.

    Google Scholar

    [5] Dewey J F,Sun Y.The Tectonic Evolution of the Tibetan Plateau[J].Royal Society of London Philosophical Transactions,1988,327(1594):379-413.

    Google Scholar

    [6] 曾庆高,毛国政,王保弟,等.1:25万改则县幅等4幅区域地质调查报告[M].北京:地质出版社,2010.

    Google Scholar

    [7] Fan J J,Li C.Petrology,geochemistry,and geochronology of the Zhonggang ocean island,northern Tibet:implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys[J].International Geology Review,2014,56(12):1504-1520.

    Google Scholar

    [8] 付佳俊,丁林,许强,等.西藏改则洞错地区白垩纪火山岩锆石UPb年代学、Hf同位素组成及对班公-怒江洋俯冲闭合的制约[J].地质科学,2015,1:182-202.

    Google Scholar

    [9] 陈国荣,刘鸿飞,蒋光武,等.西藏班公湖-怒江结合带中段沙木罗组的发现[J].地质通报,2004,23(2):193-194.

    Google Scholar

    [10] 朱弟成,潘桂棠,莫宣学,等.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J].地质学报,2006,80:1312-1328.

    Google Scholar

    [11] 潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报,2006,22(3):521-533.

    Google Scholar

    [12] 鲍佩声,肖序常,苏犁,等.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约[J].中国科学(D辑),2007,3(3):298-307.

    Google Scholar

    [13] 范建军,李才,王明,等.青藏高原羌塘南部冰海杂砾岩的成因与物源——以冈玛错地区为例[J].地质通报,2012,31(9):1451-1460.

    Google Scholar

    [14] 王冠民,钟建华.班公湖-怒江构造带西段三叠纪-侏罗纪构造-沉积演化[J].地质论评,2002,48(3):297-303.

    Google Scholar

    [15] 曹圣华,肖晓林,欧阳克贵.班公湖-怒江结合带西段侏罗纪木嘎岗日群的重新厘定及意义[J].沉积学报,2008,4:559-564.

    Google Scholar

    [16] 于红.陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D].中国地质大学(北京)硕士学位论文,2011:1-67.

    Google Scholar

    [17] 朱弟成,潘桂棠,莫宣学,等.特提斯喜马拉雅带中段桑秀组玄武岩的地球化学和岩石成因[J].地球化学,2005,1:7-19.

    Google Scholar

    [18] Garcia M O,Foss D J P,West H B,et al.Geochemical and Isotopic Evolution of Loihi Volcano,Hawaii[J].Journal of Petrology,1996,36(6):1647-1674.

    Google Scholar

    [19] Winchester J A,Floyd P A.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chemical Geology,1977,20(77):325-343.

    Google Scholar

    [20] Boynton W V.Geochemistry of the rare earth elements:meteorite studies[C]//Henderson P.Rare Earth Element Geochemistry.Amsterdam:Elsevier,1984:63-114.

    Google Scholar

    [21] Sun S S,Mc Donoungh W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[C]//Saunders A D,Noryy M J.Magmatism in the Ocean Basins.Geological Society London Special Publications,1989,42:313-345.

    Google Scholar

    [22] Pearce J A,Cann J R.Tectonic setting of basic volcanic rocks determined using trace element analyses[J].Earth&Planetary Science Letters,1973,19(2):290-300.

    Google Scholar

    [23] Bienvenu P,Bougault H,Joron J L,et al.Morb Alteration:Rare-Earth Element/Non-Rare-Earth Hygromagmaphile Element Fractionation[J].Chemical Geology,1990,82(90):1-14.

    Google Scholar

    [24] Xu J F,Castillo P R,Li X H,et al.MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains,central China:implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean[J].Earth&Planetary Science Letters,2002,198(3/4):323-337.

    Google Scholar

    [25] Pearce J A.Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J].Lithos,2008,100(1):14-48.

    Google Scholar

    [26] Pearce J A,Peate D W.Tectonic Implications of the Composition of Volcanic Arc Magmas[J].Annual Review of Earth&Planetary Sciences,1995,23(1):251-285.

    Google Scholar

    [27] Frey F A,Green D H,Roy S D.Integrated Models of Basalt Petrogenesis:A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data[J].Journal of Petrology,1978,19(3):463-513

    Google Scholar

    [28] Hess P C.Phase Equilibria Constraints on the Origin of Ocean Floor Basalts[C]//Mantle Flow and Melt Generation at Mid-Ocean Ridges,1992:71.

    Google Scholar

    [29] Artiola J F.Using geochemical data:Evaluation,presentation,interpretation[J].Soil Science,1995,158(95):381.

    Google Scholar

    [30] Helo C,Hegner E,Kröner A,et al.Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia:Constraints on arc environments and crustal growth[J].Chemical Geology,2006,227(3):236-257.

    Google Scholar

    [31] Pearce J A.Role of the sub-continental lithosphere in magma genesis at active continental margin[C]//Hawkesworth C J,Norry M J.Continental Basalts and Mantle Xenoliths.Nantwich:Shiva,1983:230-249.

    Google Scholar

    [32] Meschede M.A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J].Chemical Geology,1986,56(86):207-218.

    Google Scholar

    [33] Pearce J A,Norry M J.Petrogenetic implications of Ti,Zr,Y,and Nb variations in volcanic rocks[J].Contributions to Mineralogy&Petrology,1979,69(1):33-47.

    Google Scholar

    [34] 李曙光.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图解[J].岩石学报,1993,2(2):146-157.

    Google Scholar

    [35] 王忠恒,王永胜,谢元和,等.西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J].沉积与特提斯地质,2005,25(Z1):155-162.

    Google Scholar

    [36] 李瑞保,裴先治,李佐臣,等.东昆仑南缘布青山构造混杂带哥日卓托洋岛玄武岩地球化学特征及构造意义[J].地学前缘,2014,21(1):183-195.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1177) PDF downloads(119) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint