2016 Vol. 35, No. 6
Article Contents

WANG Liangyu, LIAO Qun'an, JIANG Yunchuan, LUO Ting, HU Chaobin, XIAO Dian, TANG Shuai, LIU Yang. Petrogenesis and tectonics of late Early Cretaceous Shoshon-itic volcanic rocks in Xilin Hot, Inner Mongolia[J]. Geological Bulletin of China, 2016, 35(6): 919-931.
Citation: WANG Liangyu, LIAO Qun'an, JIANG Yunchuan, LUO Ting, HU Chaobin, XIAO Dian, TANG Shuai, LIU Yang. Petrogenesis and tectonics of late Early Cretaceous Shoshon-itic volcanic rocks in Xilin Hot, Inner Mongolia[J]. Geological Bulletin of China, 2016, 35(6): 919-931.

Petrogenesis and tectonics of late Early Cretaceous Shoshon-itic volcanic rocks in Xilin Hot, Inner Mongolia

  • According to the research on zircon dating and cross section, the authors redefined Late Jurassic Manketou Formation as Early Cretaceous Meletu Formation in the southwestern segment of the Da Xinggan Mountains. Volcanic rocks are divided into two kinds of lithology, the lower segment is mainly trachy-andesite with minor trachyte, whereas the upper is trachyte and rhyolite. The zircon U-Pb age of trachyte is 118.1±1.3Ma, suggesting that its formation age is Early Cretaceous. Rocks have rich alkali, rich po-tassium, and high aluminum whose value varies in a wide range, high Fe2O3/FeO ratios (>0.5), and relatively rich light rare earth ele-ments and LILE (such as Rb, Ba, Th and Pb) but poor high field strength elements (such as Nb, Ta, and P). Rocks have obvious iron-depletion evolution trend in the AFM diagram and "Barbed" evolution trend in the SiO2-K2O diagram, with conspicuous char-acteristics of shoshonites. Studies show that the intermediate acidic volcanic rocks of the Meletu Formation in the study area have magmatic evolution characteristics of the same source region. Magma originated from enrichment of mantle metasomatism and was formed in a stretching tectonic background and related to the retreat of subduction of the Pacific Plate.
  • 加载中
  • [1] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions:closure of the Paleo-Asian Ocean and subduction of the Pa-leo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224.

    Google Scholar

    [2] Tang J, Xu W, Wang F, et al. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China:Petro-genesis and implications for the breakup of the Rodinia superconti-nent[J]. Precambrian Research, 2013, 224:597-611.

    Google Scholar

    [3] Xu W, Ji W, Pei F, et al. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China:Chronology, geochemistry, and tec-tonic implications[J]. Journal of Asian Earth Sciences, 2009, 34(3):392-402.

    Google Scholar

    [4] Wu F, Sun D, Ge W, et al. Geochronology of the Phanerozoic gran-itoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30.

    Google Scholar

    [5] 孟恩,许文良,杨德彬,等. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2011,4:1209-1226.

    Google Scholar

    [6] 林强,葛文春,孙德有,等. 中国东北地区中生代火山岩的大地构造意义[J]. 地质科学, 1998,2:3-13.

    Google Scholar

    [7] 葛文春,林强,孙德有,等. 大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J]. 岩石学报, 1999, 3:396-406.

    Google Scholar

    [8] 邵济安,张履桥,牟保磊. 大兴安岭中南段中生代的构造热演化[J]. 中国科学(D辑), 1998, 28(3):193-200.

    Google Scholar

    [9] 赵越,杨振宇,马醒华. 东亚大地构造发展的重要转折[J]. 地质科学, 1994,2:105-119.

    Google Scholar

    [10] 孙德有,许文良,周燕. 大兴安岭中生代火山岩的形成机制[J]. 矿物岩石地球化学通讯, 1994, 3:162-164.

    Google Scholar

    [11] 张吉衡. 大兴安岭中生代火山岩年代学及地球化学研究[D]. 中国地质大学(武汉)博士学位论文, 2009:1-105.

    Google Scholar

    [12] Zhang J, Gao S, Ge W, et al. Geochronology of the Mesozoic vol-canic rocks in the Great Xing'an Range, northeastern China:Impli-cations for subduction-induced delamination[J]. Chemical Geolo-gy, 2010, 276(3/4):144-165.

    Google Scholar

    [13] 吴利仁,齐进英,王听渡,等. 中国东部中生代火山岩[J]. 地质学报, 1982,3:223-234.

    Google Scholar

    [14] 徐志刚. 中国东部中生代火山岩成因及其与太平洋板块运动关系[J]. 中国地质科学院院报, 1990, 1:56-59.

    Google Scholar

    [15] 蒋国源,权恒. 大兴安岭根河、海拉尔盆地中生代火山岩[C]//中国地质科学院沈阳地质矿产研究所文集. 沈阳:辽宁科学技术出版社,1988:1-78.

    Google Scholar

    [16] 李锦轶,莫申国,和政军,等. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J]. 地学前缘, 2004, 11(3):157-168.

    Google Scholar

    [17] Wang F, Zhou X, Zhang L, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters. 2006, 251(1/2):179-198.

    Google Scholar

    [18] 陈志广,张连昌,周新华,等. 满洲里新右旗火山岩剖面年代学和地球化学特征[J]. 岩石学报, 2006, 12:2971-2986.

    Google Scholar

    [19] 张玉涛. 大兴安岭北段漠河地区塔木兰沟组火山岩地球化学特征[J]. 科技导报, 2013, 31(33):25-30.

    Google Scholar

    [20] 张连昌,陈志广,周新华,等. 大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约[J]. 岩石学报, 2007, 11:2823-2835.

    Google Scholar

    [21] 葛文春,林强,李献华,等. 大兴安岭北部伊列克得组玄武岩的地球化学特征[J]. 矿物岩石, 2000, 20(3):14-18.

    Google Scholar

    [22] 葛文春,李献华,林强,等. 呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J]. 地质科学, 2001,2:176-183.

    Google Scholar

    [23] 张玉涛,张连昌,英基丰,等. 大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征[J]. 岩石学报, 2007, 11:2811-2822.

    Google Scholar

    [24] 董玉,葛文春,杨浩,等. 大兴安岭中段早白垩世白音高老组火山岩年代学与地球化学研究[C]//中国地球科学联合学术联会. 2014:2165.

    Google Scholar

    [25] 周新华,英基丰,张连昌,等. 大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约[J]. 地球科学(中国地质大学学报), 2009, 1:1-10.

    Google Scholar

    [26] 吴华英,张连昌,周新华,等. 大兴安岭中段晚中生代安山岩年代学和地球化学特征及成因分析[J]. 岩石学报, 2008, 24(6):1339-1352.

    Google Scholar

    [27] 金玲. 内蒙古科右中旗地区梅勒图组火山岩特征及意义[D]. 吉林大学硕士学位论文, 2014:1-51.

    Google Scholar

    [28] 刘尔义. 大兴安岭-燕山地层分区中、新生代地层[J]. 吉林地质, 1996, Z1:70-80.

    Google Scholar

    [29] 王友勤. 关于中国东北区地层区划的意见[J]. 吉林地质, 1996, Z1:15-22.

    Google Scholar

    [30] Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace ele-ments of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43.

    Google Scholar

    [31] Liu Y, Gao S, Hu Z, et al. Continental and Oceanic Crust Recy-cling-induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.

    Google Scholar

    [32] Liu Y, Hu Z, Zong K, et al. Reappraisement and refinement of zir-con U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546.

    Google Scholar

    [33] Ludwig K R. User's manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Centre Special Publication, 2003:1-39.

    Google Scholar

    [34] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.

    Google Scholar

    [35] 吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 16:1589-1604.

    Google Scholar

    [36] Hoskin P W O, Black L P. Metamorphic zircon formation by sol-id-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423-439.

    Google Scholar

    [37] Bas M J L, Maitre R W L, Streckeisen A, et al. A Chemical Clas-sification of Volcanic Rocks Based on the Total Alkali-Silica Dia-gram[J]. Journal of Petrology, 1986, 27(3):745-750.

    Google Scholar

    [38] 邱检生,徐夕生,蒋少涌. 地壳深俯冲与富钾火山岩成因[J]. 地学前缘, 2003, 3:191-200.

    Google Scholar

    [39] Turner S, Arnaud N, Liu J, et al. Post-collision, Shoshonitic Volca-nism on the Tibetan Plateau:Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts[J]. Jour-nal of Petrology, 1996, 37(1):45-71.

    Google Scholar

    [40] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Con-tributions to Mineralogy and Petrology, 1976, 58(1):63-81.

    Google Scholar

    [41] Shand S J. Eruptive rocks:their genesis, composition, classification, and their relation to ore-deposits, with a chapter on meteorites[M]. T. Murby London, 1927:1-360.

    Google Scholar

    [42] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oce-anic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.

    Google Scholar

    [43] Morrison G W. Characteristics and tectonic setting of the shoshon-ite rock association[J]. Lithos, 1980, 13(1):97-108.

    Google Scholar

    [44] 林景仟. 岩浆岩成因导论[M]. 北京:地质出版社, 1987:223-225.

    Google Scholar

    [45] Müller D, Groves D I. Direct and indirect associations between po-tassic igneous rocks, shoshonites and gold-copper deposits[J]. Ore Geology Reviews, 1993, 8(5):383-406.

    Google Scholar

    [46] Henney P J. Potassic Igneous Rocks and associated Gold-Copper Mineralization (3rd Ed.)[J]. Quarterly Journal of Engineering Geol-ogy and Hydrogeology, 2001, 34(4):417-418.

    Google Scholar

    [47] Müller D, Rock N M S, Groves D I. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tecton-ic settings:A pilot study[J]. Mineralogy and Petrology, 1992, 46(4):259-289.

    Google Scholar

    [48] 赵海玲,邓晋福,陈发景,等. 中国东北地区中生代火山岩岩石学特征与盆地形成[J]. 现代地质, 1998, 12(1):57-63.

    Google Scholar

    [49] 邵济安,刘福田,陈辉,等. 大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J]. 地质学报, 2001,1:56-63.

    Google Scholar

    [50] Wu F, Han R, Yang J, et al. Initial constraints on the timing of gra-nitic magmatism in North Korea using U-Pb zircon geochronolo-gy[J]. Chemical Geology, 2007, 238(3/4):232-248.

    Google Scholar

    [51] 许文良,王枫,裴福萍,等. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 2:339-353.

    Google Scholar

    [52] Wu F, Sun D, Jahn B, et al. A Jurassic garnet-bearing granitic plu-ton from NE China showing tetrad REE patterns[J]. Journal of Asian Earth Sciences, 2004, 23(5):731-744.

    Google Scholar

    [53] 孙德有,吴福元,高山,等. 吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J]. 地学前缘, 2005, 2:263-275.

    Google Scholar

    [54] 金鑫. 松辽盆地北部火山岩的锆石U-Pb年龄及Hf同位素组成[D]. 吉林大学硕士学位论文, 2012:1-77.

    Google Scholar

    [55] Wu F, Sun D, Li H, et al. The nature of basement beneath the Songliao Basin in NE China:geochemical and isotopic constraints[J]. Physics and Chemistry of the Earth,Part A:Solid Earth and Geode-sy, 2001, 26(9/10):793-803.

    Google Scholar

    [56] 高福红,许文良,杨德彬,等. 松辽盆地南部基底花岗质岩石锆石LA-ICP-MS U-Pb定年:对盆地基底形成时代的制约[J]. 中国科学(D辑), 2007, 37(3):331-335.

    Google Scholar

    [57] Kinoshita O. Migration of igneous activities related to ridge subduc-tion in Southwest Japan and the East Asian continental margin from the Mesozoic to the Paleogene[J]. Tectonophysics, 1995, 245(1/2):25-35.

    Google Scholar

    [58] Han R, Ree J, Cho D, et al. SHRIMP U-Pb zircon ages of pyro-clastic rocks in the Bansong Group, Taebaeksan Basin, South Korea and their implication for the Mesozoic tectonics[J]. Gondwana Re-search, 2006, 9(1/2):106-117.

    Google Scholar

    [59] Kim S W, Kwon S, Ryu I. Geochronological constraints on multi-ple deformations of the Honam Shear Zone, South Korea and its tectonic implication[J]. Gondwana Research, 2009, 16(1):82-89.

    Google Scholar

    [60] Yi K, Cheong C, Kim J, et al. Late Paleozoic to Early Mesozoic arc-related magmatism in southeastern Korea:SHRIMP zircon geochronology and geochemistry[J]. Lithos, 2012, 153:129-141.

    Google Scholar

    [61] 赵振华. 关于岩石微量元素构造环境判别图解使用的有关问题[J]. 大地构造与成矿学, 2007, 1:92-103.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1036) PDF downloads(44) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint