2020 Vol. 26, No. 1
Article Contents

Yan YAN, Runmin PENG, Siyu CHEN, Junlin CHEN, Xiang QIN. 2020. Quantitative structure analysis of ore-bearing garnet-rich crystal in the Huogeqi mining area in Inner Mongolia and its significance. Journal of Geomechanics, 26(1): 135-150. doi: 10.12090/j.issn.1006-6616.2020.26.01.014
Citation: Yan YAN, Runmin PENG, Siyu CHEN, Junlin CHEN, Xiang QIN. 2020. Quantitative structure analysis of ore-bearing garnet-rich crystal in the Huogeqi mining area in Inner Mongolia and its significance. Journal of Geomechanics, 26(1): 135-150. doi: 10.12090/j.issn.1006-6616.2020.26.01.014

Quantitative structure analysis of ore-bearing garnet-rich crystal in the Huogeqi mining area in Inner Mongolia and its significance

More Information
  • Crystal size distribution(CSD) is an important method to quantitatively analyze the structure of igneous rocks and metamorphic rocks. The CSD measured in metamorphic rocks provides quantitative information about crystal nucleation, growth rate and growth time during metamorphism. In this paper, garnet crystals from ore-bearing garnet-rich rock samples from the Huogeqi No. 2 deposit in Inner Mongolia are selected as the research object, supported by GIS software and R language. By using methods of spatial point pattern analysis, CSD analysis, spatial nearest neighbor analysis, spatial multi-distance analysis and Fry analysis, the microstructure variation characteristics of crystal spatial data and point spatial data are discussed. The segmented change record information of CSD curves is linked with the geological evolution history. The results show that the segmented CSD curves reflect the superimposed records of metamorphic events. The grain size distributions of different forms of crystals directly reflect the difference in the evolution history of regional metamorphic rocks and contact deformed rocks. The contact metamorphism involves a short period of high temperature, so the CSD produced is linear and not affected by annealing. The regional metamorphism involves long-term cooling at high temperature, so the initial linear CSD is later annealed and modified to bell shape. The nuclear density and CSD analysis results of ore-bearing garnet-rich samples also show two crystal group densities. It is considered that the differentiation of one crystal group may be related to the regional metamorphism in the orogenic process, while the other may be related to intrusive rocks that occurred in specific locations after regional metamorphism and activation.
  • 加载中
  • BADDELEY A, TURNER R, 2005. spatstat:an R package for analyzing spatial point patterns[J]. Journal of Statistical Software, 12(6):1-42.

    Google Scholar

    BAU M, 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions To Mineralogy and Petrology, 123(3):323-333.

    Google Scholar

    BAXTER E F, CADDICK M J, AGUE J J, 2013. Garnet:common mineral, uncommonly useful[J]. Elements, 9(6):415-419.

    Google Scholar

    BERGER A, BRODHAG S H, HERWEGH M, 2010. Reaction-induced nucleation and growth v. grain coarsening in contact metamorphic, impure carbonates[J]. Journal of Metamorphic Geology, 28(8):809-824.

    Google Scholar

    BERGER A, HERWEGH M, SCHWARZ J O, et al., 2011. Quantitative analysis of crystal/grain sizes and their distributions in 2D and 3D[J]. Journal of Structural Geology, 33(12):1751-1763.

    Google Scholar

    CHENG H, ZHOU Z Y, NAKAMURA E, 2008. Crystal-size distribution and composition of garnets in eclogites from the Dabie orogen, central China[J]. American Mineralogist, 93(1):124-133.

    Google Scholar

    CLARK P J, EVANS F C, 1954. Distance to nearest neighbor as a measure of spatial relationships in populations[J]. Ecology, 35(4):445-453.

    Google Scholar

    DAI Z X, SHENG J F, BAI Y, et al., 2005. Distribution and potentiality of lead and zinc resources in the world[M]. Beijing:Seismological Press. (in Chinese)

    Google Scholar

    EBERL D D, DRITS V A, SRODON J, 1998. Deducing growth mechanisms for minerals from the shapes of crystal size distributions[J]. American journal of Science, 298(6):499-533.

    Google Scholar

    EBERL D D, KILE D E, DRITS V A, 2002. On geological interpretations of crystal size distributions:constant vs. proportionate growth[J]. American Mineralogist, 87(8-9):1235-1241.

    Google Scholar

    EHRLICH R, VOGEL T A, WEINBERG B, et al., 1972. Textural variation in petrogenetic analyses[J]. Geological Society of America Bulletin, 83(3):665-676.

    Google Scholar

    FRY N, 1979. Random point distributions and strain measurement in rocks[J]. Tectonophysics, 60(1-2):89-105.

    Google Scholar

    GASPARIK T, 1989. Transformation of enstatite-diopside-jadeite pyroxenes to garnet[J]. Contributions to Mineralogy and Petrology, 102(4):389-405.

    Google Scholar

    HAYS S, 2011. The crystal nucleation and growth in metamorphic processes based on the Crystal Size Distributions (CSD) of mineral phases. The Grenville province, Ontario, Canada[D]. Buffalo, New York: State University of New York at Buffalo.

    Google Scholar

    HIGGINS M D, 1994. Numerical modeling of crystal shapes in thin sections:estimation of crystal habit and true size[J]. American Mineralogist, 79(1-2):113-119.

    Google Scholar

    HIGGINS M D, 2000. Measurement of crystal size distributions[J]. American Mineralogist, 85(9):1105-1116.

    Google Scholar

    HIGGINS M D, 2006. Verification of ideal semi-logarithmic, lognormal or fractal crystal size distributions from 2D datasets[J]. Journal of Volcanology and Geothermal Research, 154(1-2):8-16.

    Google Scholar

    HU J M, GONG W B, WU S J, et al., 2014. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 255:756-770.

    Google Scholar

    HUANG C K, BAI Z, ZHU Y S, et al., 2001. Copper deposit of China[M]. Beijing:Geological Publishing House. (in Chinese)

    Google Scholar

    JIN Z D, LI Y, ZHU J C, 1997. A discussion on hot water sedimentary rocks in Huogeqi Copper-polymetallic ore deposit[J]. Geology of Inner Mangolia(2):22-28. (in Chinese with English abstract)

    Google Scholar

    KELLY E D, CARLSON W D, KETCHAM R A, 2013. Magnitudes of departures from equilibrium during regional metamorphism of porphyroblastic rocks[J]. Journal of Metamorphic Geology, 31(9):981-1002.

    Google Scholar

    KETCHAM R A, CARLSON W D, 2012. Numerical simulation of diffusion-controlled nucleation and growth of porphyroblasts[J]. Journal of Metamorphic Geology, 30(5):489-512.

    Google Scholar

    KRETZ R, 1966. Grain-size distribution for certain metamorphic minerals in relation to nucleation and growth[J]. The Journal of Geology, 74(2):147-173.

    Google Scholar

    LAING W P, MARJORIBANKS R W, RUTLAND R W R, 1978. Structure of the Broken Hill mine area and its significance for the genesis of the orebodies[J]. Economic Geology, 73(6):1112-1136.

    Google Scholar

    LISITSIN V, 2015. Spatial data analysis of mineral deposit point patterns:applications to exploration targeting[J]. Ore Geology Reviews, 71:861-881.

    Google Scholar

    LISITSIN V A, PORWAL A, MCCUAIG T C, 2014. Probabilistic fuzzy logic modeling:quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations[J]. Mathematical Geosciences, 46(6):747-769.

    Google Scholar

    LIU Y, WANG W L, TENG X J, et al., 2019. Geochemistry and Hf isotopes characteristics and geological significance of Latest Early Permian granodiorite of Langshan Area, Inner Mongolia[J]. Advances in Earth Science, 34(4):366-381. (in Chinese with English abstract)

    Google Scholar

    LU S N, YANG C L, LI H K, et al., 2002. A group of rifting events in the terminal paleoproterozoic in the North China Craton[J]. Gondwana Research, 5(1):123-131.

    Google Scholar

    MAHAR E M, BAKER J M, POWELL R, et al., 1997. The effect of Mn on mineral stability in metapelites[J]. Journal of Metamorphic Geology, 15(2):223-238.

    Google Scholar

    MARSH B D, 1988. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization[J]. Contributions to Mineralogy and Petrology, 99(3):277-291.

    Google Scholar

    MARSH B D, 2007. Crystallization of silicate magmas deciphered using crystal size distributions[J]. Journal of the American Ceramic Society, 90(3):746-757.

    Google Scholar

    MVLLER T, BAUMGARTNER L P, FOSTER JR C T, et al., 2009. Crystal size distribution of periclase in contact metamorphic dolomite marbles from the southern Adamello Massif, Italy[J]. Journal of Petrology, 50(3):451-465.

    Google Scholar

    PARSA M, MAGHSOUDI A, YOUSEFI M, 2018. Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran[J]. Ore Geology Reviews, 92:97-112.

    Google Scholar

    PENG R M, ZHAI Y S, HAN X F, et al., 2007. Sinsedimentry volcanic activities in the cracking process of the Mesoproterozoic aulacogen of passive continental margin in Langshan-Zhaertai area, Inner Mongolia, and its indicating significance[J]. Acta Petrologica Sinica, 23(5):1007-1017. (in Chinese with English abstract)

    Google Scholar

    PENG R M, ZHAI Y S, WANG Z G, et al., 2006. Characteristics and exploration of submarine sedex deposits in the Langshan-Zhaertai ore concentration area, Inner Mongolia[J]. Mineral Deposits, 25(S1):221-224. (in Chinese with English abstract)

    Google Scholar

    PENG R S, ZHAI Y S, WANG J P, et al., 2010. Discovery of Neoproterozoic acid volcanic rock in the South-western section of Langshan, Inner Mongolia[J]. Chinese Science Bulletin, 55(26):2611-2620. (in Chinese with English abstract)

    Google Scholar

    PI Q H, LIU C Z, CHEN Y L, et al., 2010. Formation epoch and genesis of intrusive rocks in Huogeqi orefield of Inner Mongolia and their relationship with copper mineralization[J]. Mineral Deposits, 29(3):437-451. (in Chinese with English abstract)

    Google Scholar

    RIPLEY B D, 1977. Modelling spatial patterns[J]. Journal of the Royal Statistical Society. Series B (Methodological), 39(2):172-212.

    Google Scholar

    ROZENDAAL A, STUMPFL E F, 1984. Mineral chemistry and genesis of Gamsberg zinc deposit, South Africa[J]. Transactions of the Institution of Mining and Metallurgy, 93:B161-B175.

    Google Scholar

    RYAN P J, LAWRENCE A L, LIPSON R D, et al., 1986. The Aggeneys base metal sulphide deposits, Namaqualand district[M]//ANHAEUSSER C R, MASKE S. Mineral Deposits of Southern Africa. Johannesburg: Geological Society of South Africa: 1447-1473.

    Google Scholar

    SYMMES G H, FERRY J M, 1992. The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism[J]. Journal of Metamorphic Geology, 10(2):221-237.

    Google Scholar

    TEWHEY J D, 1975. The controls of biotite-cordierite-chlorite-garnet equilibria in the contact aureole of the cupsuptic pluton, West Central Maine and the Two-phase region in the CaO-SiO2 System: Experimental data and thermodynamic analysis[D]. Providence: Brown University.

    Google Scholar

    VERRECCHIA E P, 2003. Foreword:image analysis and morphometry of geological objects[J]. Mathematical Geology, 35(7):759-762.

    Google Scholar

    WALTERS S, BAILEY A, 1998. Geology and mineralization of the Cannington Ag-Pb-Zn deposit:an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia[J]. Economic Geology, 93(8):1307-1329.

    Google Scholar

    WANG S Y, YANG H M, 1993. Research on effusion metallogeny of the Langshan orogenic belt inner mongolia[M]. Wuhan:China University of Geosciences Press. (in Chinese)

    Google Scholar

    XU B, CHEN B, 1997. Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China Plates in northern Inner Mongolia[J]. Science in China Series D:Earth Sciences, 40(5):463-469.

    Google Scholar

    XU G Z, BIAN Q T, ZHOU S P, 1998. Geo-tectonic conditions of the formation of Proterozoic large and superlarge ore deposits along northwestern margin of North China Plate[J]. Science in China Series D:Earth Sciences, 41(1):13-20.

    Google Scholar

    YANG Z F, LUO Z H, LU X X, 2010. Quantitative textural analysis of igneous rocks and the kinetics and dynamics of magma solidification processes[J]. Earth Science Frontiers, 17(1):246-266. (in Chinese with English abstract)

    Google Scholar

    YU J J, YANG H M, YE H S, 1993. Geological and geochemical characteristics and material sources of the Huogeqi Copper-polymetallic deposit, Inner Mongolia[J]. Mineral Deposits, 12(1):67-76. (in Chinese with English abstract)

    Google Scholar

    ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25(5):722-745. (in Chinese with English abstract)

    Google Scholar

    ZHAI M G, SANTOSH M, 2013. Metallogeny of the North China Craton:link with secular changes in the evolving Earth[J]. Gondwana Research, 24(1):275-297.

    Google Scholar

    ZHAI Y S, WANG J P, DENG J, et al., 2008. Temporal-spatial evolution of metallogenic systems and its significance to mineral exploration[J]. Geoscience, 22(2):143-150. (in Chinese with English abstract)

    Google Scholar

    ZHANG Y Q, DONG S W, 2019. East Asia multi-plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5):613-641. (in Chinese with English abstract)

    Google Scholar

    ZHAO Y F, HU J M, GONG W B, et al., 2019. Tectonic framework and deformation events in the central Trans-North China Tectonic Belt during the Late Paleoproterozoic[J]. Earth Science Frontiers, 26(2):104-119. (in Chinese with English abstract)

    Google Scholar

    ZHONG R C, LI W B, CHEN Y J, et al., 2012. Ore-forming conditions and genesis of the Huogeqi Cu-Pb-Zn-Fe deposit in the northern margin of the North China Craton:evidence from ore petrologic characteristics[J]. Ore Geology Reviews, 44:107-120.

    Google Scholar

    戴自希, 盛继福, 白冶, 等, 2005.世界铅锌资源的分布与潜力[M].北京:地震出版社.

    Google Scholar

    黄崇轲, 白冶, 朱裕生, 等, 2001.中国铜矿床(上册)[M].北京:地质出版社.

    Google Scholar

    金章东, 李英, 朱金初, 1997.霍各乞铜多金属矿区热水沉积岩类初探[J].内蒙古地质(2):22-28.

    Google Scholar

    刘洋, 王文龙, 滕学建, 等, 2019.内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、Hf同位素特征及其地质意义[J].地球科学进展, 34(4):366-381.

    Google Scholar

    彭润民, 翟裕生, 王志刚, 等, 2006.内蒙古狼山-渣尔泰山矿集区海底喷流成矿特征与勘查[J].矿床地质, 25(S1):221-224.

    Google Scholar

    彭润民, 翟裕生, 韩雪峰, 等, 2007.内蒙古狼山-渣尔泰山中元古代被动陆缘裂陷槽裂解过程中的火山活动及其示踪意义[J].岩石学报, 23(5):1007-1017.

    Google Scholar

    彭润民, 翟裕生, 王建平, 等, 2010.内蒙狼山新元古代酸性火山岩的发现及其地质意义[J].科学通报, 55(26):2611-2620.

    Google Scholar

    皮桥辉, 刘长征, 陈岳龙, 等, 2010.内蒙古霍各乞海西期侵入岩形成时代、成因及其与铜矿体的关系[J].矿床地质, 29(3):437-451.

    Google Scholar

    王思源, 杨海明, 1993.狼山造山带喷溢成矿研究[M].武汉:中国地质大学出版社.

    Google Scholar

    徐备, 陈斌, 1997.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J].中国科学(D辑), 27(3):227-232.

    Google Scholar

    杨宗锋, 罗照华, 卢欣祥, 2010.定量化火成岩结构分析与岩浆固结的动力学过程[J].地学前缘, 17(1):246-266.

    Google Scholar

    余金杰, 杨海明, 叶会寿, 1993.霍各乞铜多金属矿床的地质-地球化学特征及矿质来源[J].矿床地质, 12(1):67-76.

    Google Scholar

    翟明国, 2019.华北克拉通构造演化[J].地质力学学报, 25(5):722-745.

    Google Scholar

    翟裕生, 王建平, 邓军, 等, 2008.成矿系统时空演化及其找矿意义[J].现代地质, 22(2):143-150.

    Google Scholar

    张岳桥, 董树文, 2019.晚中生代东亚多板块汇聚与大陆构造体系的发展[J].地质力学学报, 25(5):613-641.

    Google Scholar

    赵远方, 胡健民, 公王斌, 等, 2019.华北克拉通中部带中段古元古代构造格架与主要变形事件研究[J].地学前缘, 26(2):104-119.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(4131) PDF downloads(40) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint