2017 Vol. 23, No. 6
Article Contents

MENG Huajun, JIANG Yuanjun, ZHANG Shuxuan, ZHANG Xiangying, LI Huanbin, ZHAO Weikang. ANALYSIS ON THE CHANGE OF INFLUENCE FACTORS ON SLIPPING DISPLACEMENT OF LANDSLIDES IN DUJIANGYAN AREA BEFORE AND AFTER THE WENCHUAN EARTHQUAKE[J]. Journal of Geomechanics, 2017, 23(6): 904-913.
Citation: MENG Huajun, JIANG Yuanjun, ZHANG Shuxuan, ZHANG Xiangying, LI Huanbin, ZHAO Weikang. ANALYSIS ON THE CHANGE OF INFLUENCE FACTORS ON SLIPPING DISPLACEMENT OF LANDSLIDES IN DUJIANGYAN AREA BEFORE AND AFTER THE WENCHUAN EARTHQUAKE[J]. Journal of Geomechanics, 2017, 23(6): 904-913.

ANALYSIS ON THE CHANGE OF INFLUENCE FACTORS ON SLIPPING DISPLACEMENT OF LANDSLIDES IN DUJIANGYAN AREA BEFORE AND AFTER THE WENCHUAN EARTHQUAKE

  • Slipping displacement of landslide is one of the most important assessment indexes for prevention and mitigation of landslide disaster, which is not only controlled by landslide volume and drop but also related to the influence of topographical environment.On the basis of detailed field investigation and inventory for 51 seismic-induced landslides and 16 rainfall-induced landslides seated in Dujiangyan area, the correlation between six factors and horizontal slipping displacement of landslides are analyzed through mathematical statistic method, factors including depositional gradient of slope, ridge height difference before and after the earthquake, plane shape, volume, and average thickness of landslide mass and friction coefficient of slope surface. Afterwards, the influence of different factors on different types of landslides before and after Wenchuan earthquake are sort out, and the predictive formulas of slipping displacement due to different causes are built which may support the disaster mitigation in the future. The preliminary conclusions reveal that slipping displacements of seismic-induced landslides are mainly affected by landslide volume(lgV), depositional gradient of slope(α), plane shape(R) and ridge height difference before and after the earthquake(ΔH); while rainfall-induced landslides are mainly affected by ridge height difference before and after the earthquake(ΔH), landslide volume(lgV), depositional gradient of slope(α) and friction coefficient of slope surface(μ). After the Wenchuan earthquake, the factors affecting the sliding of rainfall-induced landslides are changing with a relatively low correlation with slipping displacement, showing that their influence are decreasing and only landslide volume(lgV) still stays a strong correlation.

  • 加载中
  • [1] Kent P E. The transport mechanism in catastrophic rock falls[J]. The Journal of Geology, 1966, 74(1):79~93. doi: 10.1086/627142

    CrossRef Google Scholar

    [2] Shreve R L. The Blackhawk Landslide[M]. Boulder, CO:Geological Society of America, 1968, 1~48.

    Google Scholar

    [3] Shreve R L. Leakage and fluidization in air-layer lubricated avalanches[J]. GSA Bulletin, 1968, 79(5):653~658.

    Google Scholar

    [4] Erismann T H. Mechanisms of large landslides[J]. Rock Mechanics, 1979, 12(1):15~46. doi: 10.1007/BF01241087

    CrossRef Google Scholar

    [5] 邢爱国, 殷跃平, 齐超, 等.高速远程滑坡气垫效应的风洞模拟试验研究[J].上海交通大学学报, 2012, 46(10):1642~1646.

    Google Scholar

    XING Aiguo, YIN Yueping, QI Chao, et al. Study on the wind tunnel testing of air cushion effect of high-speed and long-runoutlandslide[J]. Journal of Shanghai Jiaotong University, 2012, 46(10):1642~1646. (in Chinese with English abstract)

    Google Scholar

    [6] 程谦恭, 王玉峰, 朱圻, 等.高速远程滑坡超前冲击气浪动力学机理[J].山地学报, 2011, 29(1):70~80.

    Google Scholar

    CHENGQiangong, WANGYufeng, ZHUQi, et al. Dynamics of the airblasts generated by rock avalanches[J]. Journal of Mountain Science, 2011, 29(1):70~80. (in Chinese with English abstract)

    Google Scholar

    [7] Eisbacher G H. Cliff collapse and rock avalanches (sturzstroms) in the Mackenzie Mountains, Northwestern Canada[J]. Canadian Geotechnical Journal, 1979, 16(2):309~334, doi:10.1139/t79-032.

    CrossRef Google Scholar

    [8] Davies T R, McSaveney M J, Hodgson K A. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal, 1999, 36(6):1096~1110, doi:10.1139/t99-067.

    CrossRef Google Scholar

    [9] Okura Y, Kitahara H, Sammori T, et al. The effects of rockfall volume on runoutdistance[J]. Engineering Geology, 2000, 58(2):109~124. doi: 10.1016/S0013-7952(00)00049-1

    CrossRef Google Scholar

    [10] HsüK J. Catastrophic Debris Streams (Sturzstroms) generated by rockfalls[J]. GSA Bulletin, 1975, 86(1):129~140. doi: 10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2

    CrossRef Google Scholar

    [11] Davies T R H. Spreading of rock avalanche debris by mechanical fluidization[J]. Rock Mechanics, 1982, 15(1):9~24. doi: 10.1007/BF01239474

    CrossRef Google Scholar

    [12] Sassa K. Geotechnical model for the motion of landslides[A]. Proceedings of the 5th International Symposium on Landslides[C].Publrotterdam:A Abalkema, 1988, 37~55.

    Google Scholar

    [13] Abele G, ErismannTH, HeubergerH. Rockslide movement supported by the mobilization of groundwater-saturated valley floor sediments[J]. ZeitschriftfurGeomorphologie, 1997, 41(1):1~20.

    Google Scholar

    [14] Deline P. Interactions between rock avalanches and glaciers in the Mont Blanc massif during the late Holocene[J]. Quaternary Science Reviews, 2009, 28(11/12):1070~1083.

    Google Scholar

    [15] 王玉峰, 程谦恭, 张柯宏, 等.高速远程滑坡裹气流态化模型试验研究[J].岩土力学, 2014, 35(10):2775~2786.

    Google Scholar

    WANG Yufeng, CHENG Qiangong, ZHANG Kehong, et al. Study of fluidized characteristics of rock avalanches undereffect of entrapped air[J]. Rock and Soil Mechanics, 2014, 35(10):2775~2786. (in Chinese with English abstract)

    Google Scholar

    [16] 张明, 殷跃平, 吴树仁, 等.高速远程滑坡-碎屑流运动机理研究发展现状与展望[J].工程地质学报, 2010, 18(6):805~817.

    Google Scholar

    ZHANG Ming, YIN Yueping, WU Shuren, et al. Development status and prospects of studies on kinematics of longrunoutrockavalanches[J]. Journal of Engineering Geology, 2010, 18(6):805~817. (in Chinese with English abstract)

    Google Scholar

    [17] 李秀珍, 孔纪名. "5·12"汶川地震诱发滑坡的滑动距离预测[J].四川大学学报(工程科学版), 2010, 42(5):243~249.

    Google Scholar

    LIXiuzhen, KONG Jiming. Runout distance estimation of landslides triggered by"5·12"Wenchuan earthquake[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(5):243~249. (in Chinese with English abstract)

    Google Scholar

    [18] 樊晓一, 乔建平, 韩萌, 等.灾难性地震和降雨滑坡的体积与运动距离研究[J].岩土力学, 2012, 33(10):3051~3058.

    Google Scholar

    FAN Xiaoyi, QIAO Jianping, HAN Meng, et al. Volumes and movement distances of earthquake and rainfall-inducedcatastrophic landslides[J]. Rock and Soil Mechanics, 2012, 33(10):3051~3058. (in Chinese with English abstract)

    Google Scholar

    [19] 樊晓一, 乔建平. "坡"、"场"因素对大型滑坡运动特征的影响[J].岩石力学与工程学报, 2010, 29(11):2337~2347.

    Google Scholar

    FAN Xiaoyi, QIAO Jianping. Influence of landslide and ground factors on large-scale landslide movement[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11):2337~2347. (in Chinese with English abstract)

    Google Scholar

    [20] 樊晓一, 冷晓玉, 段晓冬.坡脚型与偏转型地震滑坡运动距离及地形因素作用[J].岩土力学, 2015, 36(5):1380~1388.

    Google Scholar

    FAN Xiaoyi, LENGXiaoyu, DUAN Xiaodong. Influence of topographical factors on movement distances of toe-typeand turning-type landslides triggered by earthquake[J]. Rock and Soil Mechanics, 2015, 36(5):1380~1388. (in Chinese with English abstract)

    Google Scholar

    [21] 孟华君, 姜元俊, 张向营, 等.地震扰动区碎石土滑坡滑动能力分析及预测[J].人民长江, 2017, 48(14):45~49, 54.

    Google Scholar

    MENG Huajun, JIANG Yuanjun, ZHANGXiangying, et al. Landslide sliding ability analysis and forecast of gravel soil landslide in seismic zone[J]. YangtzeRiver, 2017, 48(14):45~49, 54. (in Chinese with English abstract)

    Google Scholar

    [22] Scheidegger A E. On the prediction of the reach and velocity of catastrophic landslides[J]. Rock Mechanics, 1973, 5(4):231~236. doi: 10.1007/BF01301796

    CrossRef Google Scholar

    [23] 张永双, 石菊松, 孙萍, 等.汶川地震内外动力耦合及灾害实例[J].地质力学学报, 2009, 15(2):131~141.

    Google Scholar

    ZHANG Yongshuang, Shi Jusong, Sun Ping, et al. Coupling between endogenic and exogenic geological processes in the Wenchuan earthquake and example analysis of geo-hazards[J]. Journal of Geomechanics, 2009, 15(2):131~141. (in Chinese with English abstract)

    Google Scholar

    [24] 张永双, 雷伟志, 石菊松, 等.四川5·12地震次生地质灾害的基本特征初析[J].地质力学学报, 2008, 14(2):109~116.

    Google Scholar

    ZHANG Yongshuang, LEI Weizhi, SHI Jusong, et al. General characteristics of 5·12 earthquake-induced geohazards in Sichuan[J]. Journal of Geomechanics, 2008, 14(2):109~116. (in Chinese with English abstract)

    Google Scholar

    [25] 何宏林, 孙昭民, 魏占玉, 等.汶川Ms8.0地震地表破裂带白沙河段破裂及其位移特征[J].地震地质, 2008, 30(3):658~673.

    Google Scholar

    HEHonglin, SUNZhaomin, WEIZhanyu, et al. Ruptureofthe Ms 8.0 Wenchuanearthquake along Baishaheriver[J]. Seismology and Geology, 2008, 30(3):658~673.

    Google Scholar

    [26] 许强, 裴向军, 黄润秋, 等.汶川地震大型滑坡研究[M].北京:科学出版社, 2009, 2~18.

    Google Scholar

    XU Qiang, PEI Xiangjun, HUANG Runqiu, et al. Large-Scale Landslides Induced by the WenchuanEarthquake[M]. Beijing:Science Press, 2009, 2~18. (in Chinese)

    Google Scholar

    [27] 孟华君, 乔建平, 田宏岭, 等.小区域地震地质灾害空间分布特点分析方法探讨[J].工程地质学报, 2014, 22(1):14~23.

    Google Scholar

    MENG Huajun, QIAO Jianping, TIAN Hongling, et al. Method discussion on spatial distribution analysis of earthquake induced geohazards in small region[J]. Journal of Engineering Geology, 2014, 22(1):14~23. (in Chinese with English abstract)

    Google Scholar

    [28] Yin Y P, Cheng Y L, Liang J T, et al. Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the WenchuanMs 8.0 earthquake[J]. Landslides, 2016, 13(1):9~23. doi: 10.1007/s10346-015-0554-9

    CrossRef Google Scholar

    [29] Legros F. The mobility of long-runoutlandslides[J]. Engineering Geology, 2002, 63(3/4):301~331.

    Google Scholar

    [30] 黄润秋.汶川地震地质灾害研究[M].北京:科学出版社, 2010.

    Google Scholar

    HUANG Runqiu. Geohazard Assessment of the Wenchuan Earthquake[M]. Beijing:Science Press, 2010. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(2601) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint