2019 Vol. 39, No. 3
Article Contents

ZHAO Zhiqiang, HE Tongjun, SUN Xiaohao, CAI Keke, FAN Jie, WANG Shiwei. 2019. Geochemistry and sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou: An approach. Sedimentary Geology and Tethyan Geology, 39(3): 48-54.
Citation: ZHAO Zhiqiang, HE Tongjun, SUN Xiaohao, CAI Keke, FAN Jie, WANG Shiwei. 2019. Geochemistry and sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou: An approach. Sedimentary Geology and Tethyan Geology, 39(3): 48-54.

Geochemistry and sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou: An approach

  • The sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou are classified, according to lithological associations and geochemical signatures, into the platform-margin to the platform basin sedimentary environments. The siliceous deposits are primarily derived from the terrigenous clastic deposits rather than the hydrothermal deposits. Geochemically, the V/(V + Ni) ratios suggest the euxinic environment for the formation of the siliceous rocks from the Laobao Formation. The Al/(Al + Fe + Mn) ratios and Al-Fe-Mn triangular diagram indicate that the terrigenous clastics have play an important part in the formation of the siliceous rocks. The Al2O3/(Al2O3 + Fe2O3) ratios and Al2O3/(Al2O3 + Fe2O3) versus Fe2O3/TiO2 diagrams indicate the continental marginal environment for the tectonic setting of the siliceous rocks from the Laobao Formation. The δCe values and (La/Ce)N values also show that the siliceous rocks from the Laobao Formation were formed in the sedimentary environments intermediate between the open basin and continental marginal environments.
  • 加载中
  • [1] 伊海生,彭军,夏文杰. 扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J]. 沉积学报,1995,13(4):13-137.

    Google Scholar

    [2] 唐世荣,王东安,李任伟. 湘川地区震旦-寒武系硅岩的有机岩石学研究[J]. 沉积学报,1997,15(1):54-59.

    Google Scholar

    [3] 陈孝红,汪啸风,毛晓冬. 湘西地区晚震旦世黑色岩系地层层序、沉积环境与成因[J]. 地球学报,1999,20(1):87-95.

    Google Scholar

    [4] 彭军,伊海生,夏文杰. 湘黔桂地区晚前寒武纪层状硅质岩地球化学特征及成因[J]. 地质地球化学,1999,27(4):33-39.

    Google Scholar

    [5] 彭军,夏文杰,伊海生. 湘西晚前寒武纪层状硅质岩的热水沉积地球化学标志及其环境意义[J]. 岩相古地理,1999,19:29-37

    Google Scholar

    [6] 赵国连. 生物作用在二氧化硅聚集沉淀过程中的意义-以皖南浙西的硅质岩为例[J]. 沉积学报,1999,17(1):30-37.

    Google Scholar

    [7] 彭军,徐望国. 湘西上震旦统层状硅质岩沉积环境的地球化学标志[J]. 地球化学,2001,30:293-298.

    Google Scholar

    [8] 胡杰. 桂东北较深水相前寒武纪之交的硅质微生物岩[J]. 微体古生物学报,2008,25(3):291-305.

    Google Scholar

    [9] 常华进,储雪蕾,冯连君,等. 湖南安化留茶坡硅质岩的REE地球化学特征及其意义[J]. 中国地质,2008,35:879-887.

    Google Scholar

    [10] 常华进,储雪蕾,冯连君,等. 华南老堡组硅质岩中草莓状黄铁矿-埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报, 2009,25:1001-1007.

    Google Scholar

    [11] 杨兴莲,朱茂炎,赵元龙,等. 黔东震旦系-下寒武统黑色岩系稀土元素地球化学特征[J]. 地质论评,2008,54(1):3-15.

    Google Scholar

    [12] 张位华,姜立君,高慧,杨瑞东. 贵州寒武系底部黑色硅质岩成因及沉积环境探讨[J]. 矿物岩石地球化学通报,2003,22(2):174-178.

    Google Scholar

    [13] 常华进,储雪蕾,冯连君,等. 桂北泗里口老堡组硅质岩的常量、稀土元素特征及成因指示[J]. 沉积学报,2010,28(6):1098-1107.

    Google Scholar

    [14] 贵州省地质调查院. 贵州省区域地质志[M]. 北京:地质出版社,2013.

    Google Scholar

    [15] 周正茂, 李核良, 赵志强, 等. 贵州1:5万谯家铺幅(H49E023002)、甘龙口幅(H49E023003)、合水幅(H49E024003) 3幅区域地质调查报告[R]. 重庆:重庆市地质矿产勘查开发局607地质队,2018.

    Google Scholar

    [16] Yamamoto K. Geochemical characteristics and depositional environments of cherts and ssociated rocks in the Franciscan and Shimanto terranes[J]. Sedimentary Geology,1987,52:65~108.

    Google Scholar

    [17] 朱炳光. 硅质岩成因研究进展[J]. 中国西部科技,2011,10(26):10-11,36.

    Google Scholar

    [18] Murray R W. Chemical criteria to identify the depositional environment ofchert:General principles and applications[J]. Sedimentary Geology,1994,90(3/4):213-232.

    Google Scholar

    [19] Girt G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada,California[J]. Journal of Sedimentary Research,1996, 66(1):107-118.

    Google Scholar

    [20] 张聪,黄虎,侯明才. 地球化学方法在硅质岩成因与构造背景研究中的进展及问题[J]. 成都理工大学学报(自然科学版),2017,44(3):293-304.

    Google Scholar

    [21] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1-4):111-129.

    Google Scholar

    [22] 赵志强,凌云,李核良,等. 重庆秀山小茶园大塘坡组含锰岩系地球化学特征分析及意义[J]. 矿物岩石地球化学通报, 2019,38(2):330-341.

    Google Scholar

    [23] 谢桂青,胡瑞忠,方维萱,漆亮. 云南墨江金矿床硅质岩沉积环境的地球化学探讨[J]. 地球化学, 2001, 30(5):491-496.

    Google Scholar

    [24] Crowley T J, Berner R A. Palaeoclimate:CO2 and climate change[J]. Science,2001,292(5518):870-872.

    Google Scholar

    [25] 毛晓东,汪啸风,陈孝红. 扬子地台东南缘震旦纪-早寒武世沉积环境及有关矿产[J]. 华南地质与矿产,1998,2:24-31.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(600) PDF downloads(82) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint