Citation: | WANG Zhaoqiang, ZHANG Yan. 2023. Geochemistry and zircon U-Pb age of granodiorite porphyry: Constraints on diagenetic and metallogenic processes of the Jilongshan Cu-Au-Mo deposit, Middle-Lower Yangtze River Valley Metallogenic Belt, China. Geological Bulletin of China, 42(9): 1480-1493. doi: 10.12097/j.issn.1671-2552.2023.09.005 |
The Middle-Lower Yangtze River Valley Metallogenic Belt is an external response to the crust-mantle interaction in the background of NW subduction of the paleo-pacific plate during the Yanshannian, which is a direct result of long-term diagenetic and metallogenic activity.However, the diagenetic and metallogenic events in the Fengshan district have not been analyzed in detail.In this study, a comprehensive study for the ore-related granodiorite porphyry from the Jilongshan skarn Cu-Au deposit, Fengtian orefield, is conducted.The results reveal that the ore-related granodiorite porphyry from the Jilongshan deposit is high-K calc-alkaline and metaluminous granitoids (A/CNK generally below 1), which are also characterized by adakitic features(high Sr/Y).Zircon LA-ICP-MS dating yields an age of 147.5±1.4 Ma, indicating that the mineralized intrusion was formed in the Late Jurassic.Combined with previous studies, it is revealed that the ore-related granodiorite porphyry from the Jilongshan deposit is adakitic granitoids characterized by volcanic arc magmatic features.The ore-forming rock mass was derived from partial melting of enriched lithosphere mantle which had experienced contaminations from crustal materials during ascending.Based on the statistical analysis of the diagenetic and metallogenic events in the Fengshan field, this paper concludes that there were two diagenetic and metallogenic stages in the Fengshan field from 152 to 145 Ma and 142 to 138 Ma.The first stage of diagenetic and metallogenic events corresponds to the formation of porphyry-skarn Cu-Au-Mo deposits, while the second stage of diagenetic and metallogenic events corresponds to the formation of porphyry mineralization system.Due to the differential uplift-ablation on the southwest and northeast sides of the study area, it shows that the porphyry Cu-Au-Mo deposits and the shallow-formed low-temperature hydrothermal Au deposits on the northeast side of the study area were well preserved.On the other hand, there are no shallow-formed low-temperature hydrothermal Au deposits on the periphery of the Jilongshan(porphyry-) skarn-type Cu-Au-Mo deposits on the southwest side.The southwest Baiguoshu rock body was completely missed without any mineralization.This study is important for understanding the diagenetic and metallogenic process of the Fengshan deposit, as well as for mineral prospecting.
[1] | Boynton W V. Cosmochemistry of the Rare Earth Elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry: Developments in Geochemistry. Amsterdam: Elsevier, 1984: 63-114. |
[2] | Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0 |
[3] | Dong Y P, Zhang G W, Neubauer F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237. |
[4] | Dong Y P, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40. |
[5] | Gill T B. Orogenic Andesite and Plate Tectonics[M]. Berlin: Springer-Verlag, 1981: 1-390. |
[6] | Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 2009, 174(1/2): 117-128. |
[7] | Li X H, Li W X, Wang X C, et al. SIMS U-Pb zircon geochronology of porphyry Cu-Au-(Mo)deposits in the Yangtze River Metallogenic Belt, eastern China: Magmatic response to early Cretaceous lithospheric extension[J]. Lithos, 2010, 119(3/4): 427-438. |
[8] | Ling M X, Wang F Y, Ding X, et al. Cretaceous Ridge Subduction Along the Lower Yangtze River Belt, Eastern China[J]. Economic Geology, 2009, 104(2): 303-321. doi: 10.2113/gsecongeo.104.2.303 |
[9] | Liu S A, Li S G, He Y S, et al. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu-Au mineralization[J]. Geochimica Et Cosmochimica Acta, 2010, 74(24): 7160-7178. |
[10] | Liu X Q, Cai Z L, Kang M X. Study on the Distribution Regularity of Accompanying Harmful Elements in the Copper-Bearing Skarn Mine at the Fengshan in the Mineral Processing System[J]. Procedia Earth and Planetary Science, 2011, 2: 139-144. doi: 10.1016/j.proeps.2011.09.023 |
[11] | Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003. |
[12] | Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 |
[13] | Mao J W, Wang Y T, Lehmann B, et al. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications[J]. Ore Geology Reviews, 2006, 29(3/4): 307-324. |
[14] | Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2): 1-24. |
[15] | McDonough W F, Sun S S. The Composition of The Earth[J]. Chemical Geology, 1995, 120: 223-254. |
[16] | Pang A J, Li S R, Santosh M, et al. Geochemistry, and zircon U-Pb and molybdenite Re-Os geochronology of Jilongshan Cu-Au deposit, southeastern Hubei Province, China[J]. Geological Journal, 2014, 49(1): 52-68. |
[17] | Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. |
[18] | Pirajno F, Zhou T F. Intracontinental porphyry and porphyryskarnmineral systems in eastern China: Scrutiny of a special case "made-in-China"[J]. Economic Geology, 2015, 110(3): 603-629. |
[19] | Samake B, Xu Y M, Jiang S Y. Oxygen fugacity, temperature and pressure estimation from mineral chemistry of the granodiorite porphyry from the Jilongshan Au-Cu deposit and the Baiguoshu prospecting area in SE Hubei Province: A guide for mineral exploration[J]. Journal of Geochemical Exploration, 2018, 184: 136-149. |
[20] | Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 533-542. |
[21] | Wang M, Gutzmer J, Michalak P P, et al. PGE geochemistry of the Fengshan porphyry-skarn Cu-Mo deposit, Hubei Province, Eastern China[J]. Ore Geology Reviews, 2014, 56: 1-12. |
[22] | Wang Q, Wyman D A, Xu J F, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province(eastern China): Implications for geodynamics and Cu-Au mineralization[J]. Lithos, 2006, 89(3/4): 424-446. |
[23] | Xie G Q, Mao J W, Li R L, et al. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo(W)deposits in southeastern Hubei, China[J]. Mineralogy & Petrology, 2007, 90(3/4): 249-270. |
[24] | Xie G Q, Mao J W, Zhao H J. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle-Lower Yangtze River belt(MLYRB), East China[J]. Lithos, 2011, 125(1/2): 693-710. |
[25] | Xie G Q, Mao J W, Richards J P, et al. Distal Au Deposits Associated with Cu-Au Skarn Mineralization in The Fengshan Area, Eastern China[J]. Economic Geology, 2019, 114(1): 127-142. |
[26] | 闭忠敏, 杨松. 鸡笼山矽卡岩金(铜)矿床地质矿产特征、物质来源及成矿机制研究[J]. 矿产与地质, 2008, 22(6): 496-502. |
[27] | 常印佛, 刘湘培, 吴言昌. 长江中下游铁铜成矿带[M]. 北京: 地质出版社, 1991: 1-379. |
[28] | 陈富文, 梅玉萍, 李华芹. 鄂东丰山矿田花岗闪长斑岩体锆石SHRIMPU-Pb定年及其意义[J]. 地质学报, 2011, 85(1): 88-96. |
[29] | 韩颖霄, 谢桂青. 鄂东南鸡笼山矽卡岩型金铜矿床金、银、碲、铋的赋存状态及其对成矿条件的制约[J]. 岩石矿物学杂志, 2016, 35(4): 655-676. |
[30] | 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. |
[31] | 贾宝剑, 李胜荣, 杨庆雨, 等. 湖北鸡笼山金铜矿床流体包裹体He、Ar同位素组成及其地质意义[J]. 黄金, 2012a, 33(7): 10-15. |
[32] | 贾宝剑, 李胜荣, 杨庆雨, 等. 湖北鸡笼山矽卡岩型金铜矿床铅同位素地球化学研究[J]. 现代地质, 2012b, 26(3): 471-477. |
[33] | 李亮, 蒋少涌. 长江中下游地区九瑞矿集区邓家山花岗闪长斑岩的地球化学与成因研究[J]. 岩石学报, 2009, (11): 12. |
[34] | 李新昊, 谢桂青, 李伟, 等. 鄂东矿集区宝团山金铜矿床地质特征、赋矿岩体锆石U-Pb年龄和Hf同位素组成及其地质意义[J]. 地质通报, 2018, 37(7): 1346-1359 |
[35] | 吕庆田, 史大年, 汤井田, 等. 长江中下游成矿带及典型矿集区深部结构探测——SinoProbe-03年度进展综述[J]. 地球学报, 2011, 32(3): 257-268. |
[36] | 庞阿娟, 李胜荣, 张华锋, 等. 湖北鸡笼山岩体主要矿物的成因矿物学意义[J]. 矿物岩石, 2012, 32(3): 25-33. |
[37] | 舒广龙, 刘继顺, 马光, 等. 湖北阳新丰山铜矿大理岩中金矿化地质特征与金赋存状态研究[J]. 黄金, 2003, (6): 7-11. |
[38] | 舒广龙. 湖北丰山矿田成矿地质背景及斑岩成矿系列与微细浸染金矿[D]. 中南大学博士学位论文, 2004. |
[39] | 王建, 谢桂青, 姚磊, 等. 鄂东南鸡笼山矽卡岩型金矿床花岗闪长斑岩的成因: 地球化学和锆石U-Pb年代学约束[J]. 矿床地质, 2014a, 33(1): 16. |
[40] | 王建, 谢桂青, 陈风河, 等. 鄂东南地区鸡笼山矽卡岩金矿床的辉钼矿Re-Os同位素年龄及其构造意义[J]. 地质学报, 2014b, 88(8): 1539-1548. |
[41] | 王建, 谢桂青, 余长发, 等, 杨庆雨. 鄂东南地区鸡笼山矽卡岩金矿床的矽卡岩矿物学特征及其意义[J]. 岩石矿物学杂志, 2014c, 33(1): 149-162. |
[42] | 王敏芳, 张富成, 魏克涛, 等. 湖北省鸡笼山金铜矿床煌斑岩地球化学、矿物学特征及其地质意义[J]. 地球学报, 2018, 39(6): 721-735. |
[43] | 谢桂青, 韩颖霄, 毛景文. 长江中下游成矿带丰山矿田发现新类型金矿——远端浸染型金矿床[J]. 矿床地质, 2017, 36(1): 265-268. |
[44] | 闫峻, 安亚军, 陈江峰. 中国东部中—新生代基性岩的同位素特征: 源区性质及深部过程[J]. 地质论评, 2011, 57(4): 532-540. |
[45] | 姚凤良, 孙丰月. 长江中下游铁铜成矿带[M]. 北京: 地质出版社, 2006: 1-254. |
[46] | 翟裕生, 姚书振, 林新多. 长江中下游地区铁铜(金)成矿规律[M]. 北京: 地质出版社, 1992: 1-120. |
[47] | 詹小飞, 魏俊浩. 九瑞矿集区鸡笼山铜金矿床含矿岩体成因和地球动力学背景[J]. 地质科技情报, 2021, (3): 40. |
[48] | 张国伟, 郭安林, 刘福田, 等. 秦岭造山带三维结构及其动力学分析[J]. 中国科学(D辑), 1996, (S1): 1-6. |
[49] | 赵玲, 李亮, 匡福祥, 等. 江西九瑞矿集区鸡笼山Cu-Au-Mo矿床含矿岩体的年代学及地球化学研究[J]. 矿物岩石, 2013, 33(4): 68-75. |
[50] | 周涛发, 范裕, 袁峰. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 2008, 24(8): 1665-1678. |
[51] | 周涛发, 范裕, 袁峰, 等. 长江中下游成矿带火山岩盆地的成岩成矿作用[J]. 地质学报, 2011, 85(5): 712-730. |
[52] | 周涛发, 王世伟, 袁峰, 等. 长江中下游成矿带陆内斑岩型矿床的成岩成矿作用[J]. 岩石学报, 2016, 32(2): 271-288. |
Simplified geological map of the Middle-Lower Yangtze River Valley Metallogenic Belt
Simplified geological map of the Jiurui ore district
Simplified geological map of the Jilongshan regions, Hubei Province
Hand-specimen(a) and microscopic features include cross-polarized light(b, d) and plane-polarized light(c)for granodiorite porphyry of Jilongshan skarn Cu-Au deposit
Major and trace element discrimination diagrams for granodiorite-porphyry of the Jilongshan skarn Cu-Au deposit
Primitive mantle-normalized multi-element spider diagrams(a) and chondrite-normalized REE patterns(b) for the granodiorite porphyry of the Jilongshan skarn Cu-Au deposit
Concordia diagram of zircons from the granodiorite porphyry of the Jilongshan skarn Cu-Au deposit
Tectonic environment discrimination diagrams for the granodiorite porphyry of the Jilongshan skarn Cu-Au deposit