Citation: | FENG Yao, LIU Xiaomei, CHEN Ye, TAN Zeling, HUANG Jing. Study on the Effect of Iron Content on the Flotation of Iron-bearing Sphalerite Based on Density Functional Theory[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 15-20. doi: 10.13779/j.cnki.issn1001-0076.2022.01.003 |
The surface relaxation, electronic properties, and copper activation on sphalerite (110) surface were studied by using density functional theory (DFT), in order to investigate the effect of iron content on the iron-bearing sphalerite. The results showed that for the sphalerite with low iron content, the relaxation of zinc atoms and iron atoms on the sphalerite (110) surface to the interior of the surface becomes smaller, which reduces the steric hindrance; the electronic density of states and the energy band structure showed that the electronic activity of iron is relatively strong and there is no spin polarization, which means that low iron content may favor the flotation of sphalerite. For sphalerite with high iron content, the iron atoms on the surface relax more towards the interior, which increases the steric hindrance; the electronic state density and energy band structure showed that the activity of iron is not high, and spin polarization occurs, which is not conducive to flotation. However, iron on the sphalerite (110) surface is not easily replaced by copper, and the more iron content, the less conducive to the replacement of copper. This study explains the effect of iron content affecting surface properties and copper activation on sphalerite (110) surface at an atomic level, which provides theoretical guidance for the flotation of iron-bearing sphalerite.
[1] | U.S. Geological Survey. Mineral commodity summaries 2021 [R]. Saint Louis: U.S. Geological Survey, 2021: 191. |
[2] | 刘建. 闪锌矿表面原子构型及铜吸附活化浮选理论研究[D]. 昆明: 昆明理工大学, 2013. LIU J. Atomic configuration of sphalerite surface and theory of copper adsorption activated flotation[D]. Kunming: Kunming University of Science and Technology, 2013. |
[3] | International Lead and Zinc Study Group(ILZSG). Lead and zinc new mine and smelter projects [Z]. 2019: 1-65. |
[4] | CHEN Y, LIU X M, CHEN J H. Steric hindrance effect on adsorption of xanthate on sphalerite surface: A DFT study[J]. Minerals Engineering, 2021, 165: 106834. doi: 10.1016/j.mineng.2021.106834 |
[5] | 刘小妹, 陈晔, 冯瑶, 等. 闪锌矿银活化及对黄药吸附影响的第一性原理研究[J]. 矿产保护与利用, 2021, 41(2): 7-12. LIU X M, CHEN Y, FENG Y, et al. The first-principle study of silver activation and xanthate adsorption on sphalerite surface[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 7-12. |
[6] | 何名飞, 卜浩, 高玉德, 等. 铁闪锌矿中稀有金属铟的高效提取应用研究[J]. 有色金属(选矿部分), 2021(6): 102-106. HE M F, BU H, GAO Y D, et al. Study on high efficiency extraction of indium from marmatite[J]. Nonferrous Metals(Mineral Processing Section), 2021(6): 102-106. |
[7] | 刘红召, 杨卉芃, 冯安生. 全球锌矿资源分布及开发利用[J]. 矿产保护与利用, 2017(01): 113-118. LIU H Z, YANG H P, FENG A S. The Distribution and Utilization of Global Zinc Resource[J]. Conservation and Utilization of Mineral Resources, 2017(01): 113-118. |
[8] | 曾爱花. 结晶学及矿物学实习教程[M]. 北京: 中国原子能出版社, 2012. ZENG A H. Crystallography and mineralogy internship course[M]. Beijing: China Atomic Energy Press, 2012. |
[9] | 叶霖, 高伟, 杨玉龙, 等. 云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成[J]. 岩石学报, 2012, 28(5): 1362-1372. YE L, GAO W, YANG Y L, et al. Trace elements in sphalerite in Laochang Pb-Zn polymetallic deposit, Lancang, Yunnan Province [J]. Acta Petrologica Sinica, 2012, 28(5): 1362-1372. |
[10] | 陈晔. 晶格缺陷对闪锌矿半导体性质及浮选行为影响的第一性原理研究[D]. 南宁: 广西大学, 2009. CHEN Y. A first-principles study on the effect of lattice defects on the semiconductor properties and flotation behavior of sphalerite[D]. Nanning: Guangxi University, 2009. |
[11] | 张芹, 胡岳华, 顾帼华, 等. 铁闪锌矿的浮选行为及其表面吸附机理[J]. 中国有色金属学报, 2004(4): 676-680. doi: 10.3321/j.issn:1004-0609.2004.04.027 ZHANG Q, HU Y H, GU G H, et al. Mechanism of Cu2+ ion activation flotation of marmatite in absence and presence of ethyl xanthate[J]. The Chinese Journal of Nonferrous Metals, 2004(4): 676-680. doi: 10.3321/j.issn:1004-0609.2004.04.027 |
[12] | 林隆述, 张志兰, 章正刚. 闪锌矿系列的物理性质研究[J]. 成都地质学院学报, 1989(2): 36-45. LIN L S, ZHANG Z L, ZHANG Z G. The physical properties study of sphalerite series[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 1989(2): 36-45. |
[13] | 黎维中. 难处理铅锌银硫化矿物资源综合回收的研究与实践[D]. 长沙: 中南大学, 2007: 1-3. LI W Z. Research on floation sepaeation of complex lead-zinc-sliver sulfide ore and its practice[D]. Changsha: Central South University, 2007: 1-3. |
[14] | 王濮, 潘兆橹, 翁玲宝. 系统矿物学: 上册[M]. 北京: 地质出版社, 1982. WANG P, PAN Z L, WENG L B. System mineralogy: volume 1[M]. Beijing: Geological Press, 1982. |
[15] | 黎全. 大厂100(105)号锡石多金属矿选矿关键技术研究及应用[D]. 长沙: 中南大学, 2002. LI Q. Research and practice of key benefication on No. 100 and No. 105 ore body of dachang tin-polymetallic deposit. Changsha: Central South University, 2002. |
[16] | 曾勇, 刘建, 王瑜, 等. 典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展[J]. 矿产保护与利用, 2019, 39(2): 109-117. ZENG Y, LIU J, WANG Y, et al. Research progress on the interaction mechanism of typical metal ions with sphalerite and its effect on flotation[J]. Conservation and Utilization of Mineral, 2019, 39(2): 109-117. |
[17] | Gerson A R, Lange A G, Prince K E, et al. The mechanism of copper activation of sphalerite[J]. Applied surface science, 1999, 137(1/2/3/4): 207-223. |
[18] | SARVARAMINI A, LARACHI F, HART B. Collector attachment to lead-activated sphalerite - experiments and DFT study on pH and solvent effects [J]. Applied surface science, 2016, 367: 459-472. doi: 10.1016/j.apsusc.2016.01.213 |
[19] | STEELE H N, WRIGHT K, HILLIER I H. A quantum- mechanical study of the (110) surface of sphalerite (ZnS) and its interaction with Pb2+ species[J]. Physics and chemistry of minerals, 2003, 30(2): 69-75. doi: 10.1007/s00269-002-0296-9 |
[20] | 陈薇, 童雄. 浮选闪锌矿和铁闪锌矿的捕收剂研究现状及进展[J]. 国外金属矿选矿, 2007(8): 25-27. CHEN W, TONG X. Research status and progress of collectors for flotation of sphalerite and sphalerite[J]. Metallic Ore Dressing Abroad, 2007(8): 25-27. |
[21] | BOULTON A, FORNASIERO D, RALSTON J. Effect of iron content in sphalerite on flotation[J]. Minerals Engineering, 2005, 18(11): 1120-1122. doi: 10.1016/j.mineng.2005.03.008 |
[22] | HARMER S L, MIERCZYNSKA-VASILEV A, BEATTIE D A, et al. The effect of bulk iron concentration and heterogeneities on the copper activation of sphalerite[J]. Minerals engineering, 2008, 21(12): 1005-1012. |
[23] | 谢贤. 难选铁闪锌矿多金属矿石的浮选试验与机理探讨[D]. 昆明: 昆明理工大学, 2011. XIE X. Flotation test and mechanism discussion of refractory sphalerite polymetallic ore[D]. Kunming: Kunming University of Science and Technology, 2011. |
[24] | VANDERBILT, DAVID. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B Condensed Matter, 1990, 41(11): 7892. doi: 10.1103/PhysRevB.41.7892 |
[25] | PERDEW JP, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, Condensed matter, 1992, 45(23): 13244-13249. doi: 10.1103/PhysRevB.45.13244 |
Schematic diagram of sphalerite crystals: (a) Surface of sphalerite before optimization; (b) Surface of ideal sphalerite; (c) Surface of low-iron sphalerite; (d) Surface of high-iron sphalerite
The atomic partial density of states of the surface of iron-bearing sphalerite: (a) Ideal sphalerite, (b) low iron and (c) high iron
Band structure of iron-bearing sphalerite surface: (a) Ideal sphalerite, (b) low iron and (c) high iron
The atomic partial points density of states of the surface of copper-activated sphalerite