2022 Vol. 28, No. 2
Article Contents

SHI Hui, LI Zongxing, YANG Yuanyuan, PENG Bo, HU Junjie, FANG Xinxin, ZHANG Hao, WEI Xiaojie. 2022. The factors influencing the enrichment of organic matters in the Carboniferous source rocks, Ounan depression, eastern Qaidam basin. Journal of Geomechanics, 28(2): 203-216. doi: 10.12090/j.issn.1006-6616.2021135
Citation: SHI Hui, LI Zongxing, YANG Yuanyuan, PENG Bo, HU Junjie, FANG Xinxin, ZHANG Hao, WEI Xiaojie. 2022. The factors influencing the enrichment of organic matters in the Carboniferous source rocks, Ounan depression, eastern Qaidam basin. Journal of Geomechanics, 28(2): 203-216. doi: 10.12090/j.issn.1006-6616.2021135

The factors influencing the enrichment of organic matters in the Carboniferous source rocks, Ounan depression, eastern Qaidam basin

    Fund Project: This research is financially supported by the Geological Survey Project of the China Geological Survey (Grant No.DD20190107, DD20190094) and Basic Research Fund of the Chinese Academy of Geological Sciences (Grant No.DZLXJK202006)
  • The Ounan depression is a favorable structural unit for the Carboniferous hydrocarbon migration and accumulation, which demonstrates certain exploration potential. However, the organic matter enrichment mechanism is still unclear, which results in the absence of effective guidance for predicting the distribution of high-quality source rocks and restricts the process of oil and gas exploration. Based on geochemical analysis and XRD, SEM and other tests, the main factors influencing the enrichment of organic matters in Carboniferous source rocks have been identified through a comprehensive investigation into the aspects such as mineral composition, organic matter abundance, kerogen type, thermal evolution degree, formation environment, and the relationship between TOC and primary minerals. The results reveal that shales and carbonate source rocks have been developed in the Carboniferous, a large quantity at poor-medium level and a few at good or above level. They were deposited in the environment of intercontinental shelf with saline-water, arid-hot climate and weak oxidation and reduction. The dispersed organic matters are composed of mixed marine and terrestrial origins, which are overall in a "maturity-high maturity stage". The Carboniferous clastic source rocks are mainly residual type Ⅲ kerogen, but the extracted chloroform bitumen "A" is mainly derived from type Ⅱ kerogen.TOC values increase with the growing of quartz minerals because the high-abundance source rocks are rich in siliceous biological fossils. The SiO2 in the high-SiO2 source rocks has been identified as biogenic, suggesting that the participation of siliceous organisms in the Carboniferous cause the enrichment of marine organic matters and greatly improve the primary productivity of the sediments. This study provide the basis for predicting the distribution of Carboniferous high-quality source rocks and the deployment of oil and gas resources in the study area.

  • 加载中
  • ADACHI M, YAMAMOTO K, SUGISAKI R, 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity[J]. Sedimentary Geology, 47(1-2): 125-148. doi: 10.1016/0037-0738(86)90075-8

    CrossRef Google Scholar

    CAO J, LIU C L, MA Y S, et al., 2016. Geochemical characteristics and genesis of shale gas for Carboniferous marine-continental transitional facies coal measure strata in Eastern Qaidam Basin[J]. Earth Science Frontiers, 23(5): 158-166. (in Chinese with English abstract)

    Google Scholar

    FU S T, MA D D, CHEN Y, et al., 2016. New advance of petroleum and gas exploration in Qaidam Basin[J]. Acta Petrolei Sinica, 37(S1): 1-10. (in Chinese with English abstract)

    Google Scholar

    FU X G, JIAN W, CHEN W B, et al., 2015. Organic accumulation in lacustrine rift basin: constraints from mineralogical and multiple geochemical proxies[J]. International Journal of Earth Sciences, 104(2): 495-511. doi: 10.1007/s00531-014-1089-3

    CrossRef Google Scholar

    GROSS D, SACHSENHOFER R F, BECHTEL A, et al., 2015. Organic geochemistry of Mississippian shales (Bowland Shale Formation) in central Britain: implications for depositional environment, source rock and gas shale potential[J]. Marine and Petroleum Geology, 59: 1-21. doi: 10.1016/j.marpetgeo.2014.07.022

    CrossRef Google Scholar

    HATCH J R, LEVENTHAL J S, 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. [J]. Chemical Geology, 99(1-3): 65-82. doi: 10.1016/0009-2541(92)90031-Y

    CrossRef Google Scholar

    HESSE R, 1989. Silica diagenesis: origin of inorganic and replacement cherts[J]. Earth-Science Reviews, 26(1-3): 253-284. doi: 10.1016/0012-8252(89)90024-X

    CrossRef Google Scholar

    KHAN M Z, FENG Q L, ZHANG K, et al., 2019. Biogenic silica and organic carbon fluxes provide evidence of enhanced marine productivity in the Upper Ordovician-Lower Silurian of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 534: 109278. doi: 10.1016/j.palaeo.2019.109278

    CrossRef Google Scholar

    LI J L, LIU Z Q, XIAO Y J, et al., 2016. Shale gas formation conditions and potential area selection in Carboniferous strata in eastern Qaidam Basin[J]. Geological Bulletin of China, 35(2-3): 312-320. (in Chinese with English abstract)

    Google Scholar

    LI Y J, SUN Y L, ZHAO Y, et al., 2014. Prospects of Carboniferous shale gas exploitation in the eastern Qaidam basin[J]. Acta Geologica Sinica-English Edition, 88(2): 620-634. doi: 10.1111/1755-6724.12218

    CrossRef Google Scholar

    LI Z X, PENG B, MA Y S, et al., 2019. Progress of Carboniferous oil and gas survey in Qaidam Basin[J]. Geological Survey of China, 6(4): 79-87. (in Chinese with English abstract)

    Google Scholar

    LIU C L, MA Y S, ZHOU G, et al., 2012. Evidence for the Carboniferous hydrocarbon generation in Qaidam Basin[J]. Acta Petrolei Sinica, 33(6): 925-931. (in Chinese with English abstract)

    Google Scholar

    LIU C L, ZHANG X, YANG Y Y, et al., 2016. Carboniferous shale gas system evaluation for the Delingha depression in Qaidam Basin[J]. Earth Science Frontiers, 23(5): 135-145. (in Chinese with English abstract)

    Google Scholar

    LIU C L, ZHANG Y, YANG C H, et al., 2021. Marine frontier basin petroleum resources assessment: A case study of the Carboniferous of the Delingha Depression, Qaidam Basin[J]. Earth Science Frontiers, 28(1): 295-307. (in Chinese with English abstract)

    Google Scholar

    LIU G H, ZHAI G Y, ZOU C N, et al., 2019. A comparative discussion of the evidence for biogenic silica in Wufeng-Longmaxi siliceous shale reservoir in the Sichuan basin, China[J]. Marine and Petroleum Geology, 109: 70-87. doi: 10.1016/j.marpetgeo.2019.06.016

    CrossRef Google Scholar

    LIU K, LI Z X, SHI X B, et al., 2020. Late Hercynian-Indosinian denudation and uplift history in the eastern Qaidam Basin: constraints from multiple thermometric indicators and sedimentary evidences[J]. Chinese Journal of Geophysics, 63(4): 1403-1421. (in Chinese with English abstract)

    Google Scholar

    MA L C, JIANG W, XIAO Z X, et al., 2020. Discussion on the depositional timing of the Zhabusagaxiu formation in the eastern Qaidam Basin, China[J]. Journal of Geomechanics, 26(6): 961-972. (in Chinese with English abstract)

    Google Scholar

    MA Y S, YIN C M, LIU C L, et al., 2012. The progress of Carboniferous oil and gas investigation and assessment in Qaidam Basin[J]. Acta Geoscientica Sinica, 33(2): 135-144. (in Chinese with English abstract)

    Google Scholar

    National Energy Administration, 2020. Geochemical method for source rock evaluation: SY/T 5735-2019[S]. Beijing: Petroleum Industry Press. (in Chinese)

    Google Scholar

    NIU Y B, ZHONG J H, DUAN H L, et al., 2010. Relationship between Carboniferous sedimentary facies and source rock in Qaidam Basin[J]. Acta Sedimentologica Sinica, 28(1): 140-149. (in Chinese with English abstract)

    Google Scholar

    PENG B, ZHANG H, YANG S H, et al., 2020. Logging characterization of Carboniferous fractured-vuggy karst reservoirs in the eastern Qaidam Basin[J]. Journal of Geomechanics, 26(6): 923-931. (in Chinese with English abstract)

    Google Scholar

    Qinghai Bureau of Geology and Mineral Resources, 1991. Regional geology of Qinghai Province[M]. Beijing: Geological Publishing House.

    Google Scholar

    QIN J Z, TENGER, FU X D, 2009. Study of forming condition on marine excellent source rocks and its evaluation[J]. Petroleum Geology & Experiment, 31(4): 366-372, 378. (in Chinese with English abstract)

    Google Scholar

    REMÍREZ M N, ALGEO T J, 2020. Paleosalinity determination in ancient epicontinental seas: a case study of the T-OAE in the Cleveland Basin (UK)[J]. Earth-Science Reviews, 201: 103072. doi: 10.1016/j.earscirev.2019.103072

    CrossRef Google Scholar

    ROBINSON S G, SAHOTA J T S, 2000. Rock-magnetic characterization of early, redoxomorphic diagenesis in turbiditic sediments from the Madeira Abyssal Plain[J]. Sedimentology, 47(2): 367-394.

    Google Scholar

    SONG Y, LI S F, HU S Z, 2019. Warm-humid paleoclimate control of salinized lacustrine organic-rich shale deposition in the Oligocene Hetaoyuan Formation of the Biyang Depression, East China[J]. International Journal of Coal Geology, 202: 69-84. doi: 10.1016/j.coal.2018.11.016

    CrossRef Google Scholar

    SUN J P, CHEN S Y, PENG Y, et al., 2017. Late Carboniferous mountain-basin framework of Northeastern Qaidam area[J]. Journal of China University of Petroleum, 41(4): 10-17. (in Chinese with English abstract)

    Google Scholar

    TISSOT B P, WELTE D H, 1984. Petroleum Formation and Occurrence[M]. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar

    TRÉGUER P J, DE LA ROCHA C L, 2013. The world ocean silica cycle[J]. Annual Review of Marine Science, 5(1): 477-501. doi: 10.1146/annurev-marine-121211-172346

    CrossRef Google Scholar

    WANG B, ZHANG G W, LI S Z, et al., 2016. Early Carboniferous paleomagnetic results from the northeastern margin of the Qinghai-Tibetan plateau and their implications[J]. Gondwana Research, 36: 57-64. doi: 10.1016/j.gr.2016.04.007

    CrossRef Google Scholar

    WANG G C, SUN M, GAO S F, et al., 2018. The origin, type and hydrocarbon generation potential of organic matter in a marine-continental transitional facies shale succession (Qaidam Basin, China)[J]. Scientific Reports, 8(1): 6568. doi: 10.1038/s41598-018-25051-1

    CrossRef Google Scholar

    WANG L, LI Z X, LIU C L, et al., 2019. The Carboniferous source rock maturity evolution in the Delingha depression in the Qaidam Basin, northwest China[J]. Journal of Geomechanics, 25(3): 370-381. (in Chinese with English abstract)

    Google Scholar

    WEI W, ALGEO T J, 2020. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks[J]. Geochimica et Cosmochimica Acta, 287: 341-366. doi: 10.1016/j.gca.2019.06.034

    CrossRef Google Scholar

    WEI X J, MA Y S, LI Z X, et al., 2018. High-frequency alternations and driving mechanisms of clastic-carbonate successions in the Upper Carboniferous, northern Qaidam Basin[J]. Journal of Palaeogeography (Chinese Edition), 20(3): 409-422. (in Chinese with English abstract)

    Google Scholar

    ZANG J Y, WANG H, LIU J, et al., 2020. The research progress in biogenic silica composition and its impact on silica cycle[J]. Advances in Marine Science, 38(1): 11-20. (in Chinese with English abstract)

    Google Scholar

    曹军, 刘成林, 马寅生, 等, 2016. 柴达木盆地东部石炭系海陆过渡相煤系页岩气地球化学特征及成因[J]. 地学前缘, 23(5): 158-166.

    Google Scholar

    付锁堂, 马达德, 陈琰, 等, 2016. 柴达木盆地油气勘探新进展[J]. 石油学报, 37(S1): 1-10. doi: 10.7623/syxb2016S1001

    CrossRef Google Scholar

    国家能源局, 2020. 烃源岩地球化学评价方法: SY/T 5735-2019[S]. 北京: 石油工业出版社.

    Google Scholar

    李军亮, 柳忠泉, 肖永军, 等, 2016. 柴达木盆地东部地区石炭系泥页岩生烃条件及选区[J]. 地质通报, 35(2-3): 312-320.

    Google Scholar

    李宗星, 彭博, 马寅生, 等, 2019. 柴达木盆地石炭系油气调查最新进展[J]. 中国地质调查, 6(4): 79-87.

    Google Scholar

    刘成林, 马寅生, 周刚, 等, 2012. 柴达木盆地石炭系生烃证据[J]. 石油学报, 33(6): 925-931.

    Google Scholar

    刘成林, 张旭, 杨元元, 等, 2016. 柴达木盆地德令哈坳陷石炭系页岩气系统评价[J]. 地学前缘, 23(5): 135-145.

    Google Scholar

    刘成林, 张禹, 杨晟颢, 等, 2021. 海相低勘探程度地区油气资源评价: 以柴达木盆地德令哈坳陷石炭系为例[J]. 地学前缘, 28(1): 295-307.

    Google Scholar

    刘奎, 李宗星, 施小斌, 等, 2020. 柴达木盆地东部晚海西-印支期剥蚀量与隆升历史: 多种古温标与沉积学证据的制约[J]. 地球物理学报, 63(4): 1403-1421.

    Google Scholar

    马立成, 江万, 肖宙轩, 等, 2020. 柴达木盆地东部扎布萨尕秀组的时代归属讨论[J]. 地质力学学报, 26(6): 961-972.

    Google Scholar

    马寅生, 尹成明, 刘成林, 等, 2012. 柴达木盆地石炭系油气资源调查评价进展[J]. 地球学报, 33(2): 135-144.

    Google Scholar

    牛永斌, 钟建华, 段宏亮, 等, 2010. 柴达木盆地石炭系沉积相及其与烃源岩的关系[J]. 沉积学报, 28(1): 140-149.

    Google Scholar

    彭博, 张浩, 杨晟颢, 等, 2020. 柴达木盆地东部石炭系古岩溶缝洞单元测井响应[J]. 地质力学学报, 26(6): 923-931.

    Google Scholar

    青海省地质矿产局, 1991. 青海省区域地质志[M]. 北京: 地质出版社.

    Google Scholar

    秦建中, 腾格尔, 付小东, 2009. 海相优质烃源层评价与形成条件研究[J]. 石油实验地质, 31(4): 366-372, 378. doi: 10.3969/j.issn.1001-6112.2009.04.010

    CrossRef Google Scholar

    孙娇鹏, 陈世悦, 彭渊, 等, 2017. 柴达木东北部晚石炭世盆山格局研究[J]. 中国石油大学学报(自然科学版), 41(4): 10-17. doi: 10.3969/j.issn.1673-5005.2017.04.002

    CrossRef Google Scholar

    王利, 李宗星, 刘成林, 等, 2019. 柴达木盆地德令哈坳陷石炭系烃源岩成熟度演化史[J]. 地质力学学报, 25(3): 370-381.

    Google Scholar

    魏小洁, 马寅生, 李宗星, 等, 2018. 柴达木盆地北缘上石炭统碎屑岩: 碳酸盐岩高频转换过程及驱动机制[J]. 古地理学报, 20(3): 409-422.

    Google Scholar

    臧家业, 王昊, 刘军, 等, 2020. 生物硅组成及对硅循环影响的研究进展[J]. 海洋科学进展, 38(1): 11-20. doi: 10.3969/j.issn.1671-6647.2020.01.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Tables(2)

Article Metrics

Article views(2794) PDF downloads(98) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint