Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 6
Article Contents

XIE Man-man, LIU Mei-mei, WANG Shu-xian, LING Yuan, SUN Qing. Study on Separation of Polycyclic Aromatic Hydrocarbons in Soils for Compound-specific Carbon Isotope Analysis[J]. Rock and Mineral Analysis, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131
Citation: XIE Man-man, LIU Mei-mei, WANG Shu-xian, LING Yuan, SUN Qing. Study on Separation of Polycyclic Aromatic Hydrocarbons in Soils for Compound-specific Carbon Isotope Analysis[J]. Rock and Mineral Analysis, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131

Study on Separation of Polycyclic Aromatic Hydrocarbons in Soils for Compound-specific Carbon Isotope Analysis

More Information
  • BACKGROUND

    Tracing the source of polycyclic aromatic hydrocarbons (PAHs) by the compound-specific carbon isotope is becoming increasingly popular. For precise carbon isotope analysis, a pretreatment process is required to reduce co-outflow and unresolved complex mixture (UCM). Some existing studies require more instrumentation, such as high-performance liquid chromatography (HPLC). In addition, little attention has been paid to PAHs with a ring number less than 3.

    OBJECTIVES

    To establish a good separation method of 16 PAHs for meeting the requirements of compound-specific carbon isotope analysis.

    METHODS

    The effects of solid phase extraction (SPE) cartridges with amino and silica fillers were compared, and 10 eluent solvents were used on the separation, purification and enrichment effects of PAHs. Gas chromatography (GC) was used to test the separation and purification effect, and gas chromatography-isotope ratio mass spectrometry (GC-IRMS) was used to analyze compound-specific carbon isotopes.

    RESULTS

    More than 20% of the naphthalene and acenaphthene in the amino cartridge cannot be completely separated from the alkanes and unresolved peaks. The silica gel SPE cartridge has better impurity removal and separation effects than the amino cartridge. Choosing 1000mg/6mL silica gel SPE cartridge, using 6mL n-pentane to elute UCM and alkanes, and 5mL n-pentane-dichloromethane (70:30, V/V) to elute PAHs, and GC to conduct a preliminary inspection of the separation and purification effect, and GC-IRMS for individual carbon isotope analysis. The recovery of 16 kinds of PAHs was 79%-128%, the relative standard deviation was 2%-13% (1σ, n=6), and the analysis accuracy of the single carbon isotope ratio (δ13C) was 0.1‰-0.75‰.

    CONCLUSIONS

    The method greatly reduces the interferences of co-outflow and UCM to compound-specific carbon isotope analysis of PAHs, especially the low cyclic PAHs. No significant carbon isotope fractionation of PAHs is observed during purification, which satisfies compound-specific carbon isotope analysis requirements.

  • 加载中
  • [1] Ye X Q, Pan W Y, Li C M, et al. Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance[J]. Journal of Environmental Sciences, 2020, 91: 1-9. doi: 10.1016/j.jes.2019.12.015

    CrossRef Google Scholar

    [2] Hou J, Yin W J, Li P, et al. Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function[J]. Journal of Hazardous Materials, 2019, 386: 121663.

    Google Scholar

    [3] Tang J, An T C, Xiong J K, et al. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China[J]. Environmental Geochemistry and Health, 2017, 39: 1487-1499. doi: 10.1007/s10653-017-9936-3

    CrossRef Google Scholar

    [4] 李玉芳, 潘萌, 顾涛, 等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586.

    Google Scholar

    Li Y F, Pan M, Gu T, et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586.

    Google Scholar

    [5] 姜永海, 韦尚正, 席北斗, 等. PAHs在我国土壤中的污染现状及其研究进展[J]. 生态环境学报, 2009, 18(3): 1176-1181. doi: 10.3969/j.issn.1674-5906.2009.03.067

    CrossRef Google Scholar

    Jiang Y H, Wei S Z, Xi B D, et al. Polycyclic aromatic hydrocarbons (PAHs) pollution in soils in China: Recent advances and future prospects[J]. Ecology and Environmental Sciences, 2009, 18(3): 1176-1181. doi: 10.3969/j.issn.1674-5906.2009.03.067

    CrossRef Google Scholar

    [6] 苑金鹏, 钟宁宁, 吴水平. 土壤中多环芳烃的稳定碳同位素特征及其对污染源示踪意义[J]. 环境科学学报, 2005, 25(1): 81-85. doi: 10.3321/j.issn:0253-2468.2005.01.014

    CrossRef Google Scholar

    Yuan J P, Zhong N N, Wu S P. Stable carbon isotopic composition of polycyclic aromatic hydrocarbons in soil and its implications for the pollutants tracing[J]. Acta Scientiae Circumstantiae, 2005, 25(1): 81-85. doi: 10.3321/j.issn:0253-2468.2005.01.014

    CrossRef Google Scholar

    [7] 李琪, 李钜源, 窦月芹, 等. 淮河中下游沉积物PAHs的稳定碳同位素源解析[J]. 环境科学研究, 2012, 25(6): 672-677.

    Google Scholar

    Li Q, Li J Y, Dou Y Q, et al. Compound-specific stable carbon isotopic analysis on origins of PAHs in sediments from the middle and lower reaches of the Huaihe River[J]. Research of Environmental Sciences, 2012, 25(6): 672-677.

    Google Scholar

    [8] 白慧玲, 彭林, 刘效峰, 等. 太原市工、商业区PM10中PAHs碳同位素组成及来源[J]. 环境科学研究, 2013, 26(12): 1276-1282.

    Google Scholar

    Bai H L, Peng L, Liu X F, et al. Carbon isotope compositions and source apportionment of PAHs associated with PM10 of industrial and commercial districts in Taiyuan City[J]. Research of Environmental Sciences, 2013, 26(12): 1276-1282.

    Google Scholar

    [9] 焦杏春, 王广, 叶传永, 等. 应用单体碳同位素分析技术探析农田土壤中多环芳烃的植物降解过程[J]. 岩矿测试, 2014, 33(6): 863-870.

    Google Scholar

    Jiao X C, Wang G, Ye C Y, et al. Study on the phytodegradation of PAHs from farmland soil using compound-specific isotope analysis technique[J]. Rock and Mineral Analysis, 2014, 33(6): 863-870.

    Google Scholar

    [10] Vasil'Chuk Y K, Belik A D, Budantseva N A, et al. Polycyclic aromatic hydrocarbons and carbon isotopes in a palsa peat (Bol 'shezemel' skaya Tundra)[J]. Eurasian Soil Science, 2021, 54(7): 999-1006. doi: 10.1134/S1064229321070139

    CrossRef Google Scholar

    [11] Garbariene I, Garbaras A, Masalaite A, et al. Identification of wintertime carbonaceous fine particulate matter (PM2.5) sources in Kaunas, Lithuania using polycyclic aromatic hydrocarbons and stable carbon isotope analysis[J]. Atmospheric Environment, 2020, 237: 117673. doi: 10.1016/j.atmosenv.2020.117673

    CrossRef Google Scholar

    [12] 陆燕, 王小云, 曹建平. 沉积物中16种多环芳烃单体碳同位素GC-C-IRMS测定[J]. 石油实验地质, 2018, 40(4): 532-537.

    Google Scholar

    Lu Y, Wang X Y, Cao J P. Compound-specific carbon stable isotope analysis of 16 polycyclic aromatic hydrocarbons in sediments by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS)[J]. Petroleum Geology and Experiment, 2018, 40(4): 532-537.

    Google Scholar

    [13] 史兵方, 杨秀培, 唐婧, 等. 荧光法测定土壤中总的多环芳烃含量[J]. 环境科学导刊, 2007, 26(4): 91-93. doi: 10.3969/j.issn.1673-9655.2007.04.029

    CrossRef Google Scholar

    Shi B F, Yang X P, Tang J, et al. Determination of total polycyclic aromatic hydrocarbons in soil by fluorescence[J]. Environmental Science Survey, 2007, 26(4): 91-93. doi: 10.3969/j.issn.1673-9655.2007.04.029

    CrossRef Google Scholar

    [14] 倪进治, 王军, 李小燕, 等. 超高效液相色谱荧光检测器测定土壤中多环芳烃[J]. 分析试验室, 2010, 29(5): 25-28. doi: 10.3969/j.issn.1000-0720.2010.05.007

    CrossRef Google Scholar

    Ni J Z, Wang J, Li X Y, et al. Determination of polycyclic aromatic hydrocarbons in soil by ultra performance liquid chromatography with a fluorescence detector[J]. Chinese Journal of Analysis Laboratory, 2010, 29(5): 25-28. doi: 10.3969/j.issn.1000-0720.2010.05.007

    CrossRef Google Scholar

    [15] 张道来, 刘娜, 朱志刚, 等. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价[J]. 岩矿测试, 2016, 35(5): 521-529.

    Google Scholar

    Zhang D L, Liu N, Zhu Z G, et al. Sources and risk assessment of polycyclic aromatic hydrocarbon in surface sediments from typical coast of Shandong Peninsulia[J]. Rock and Mineral Analysis, 2016, 35(5): 521-529.

    Google Scholar

    [16] 陶鑫, 全洗强, 俞建国, 等. 加速溶剂萃取-旋蒸定容-高效液相色谱法检测土壤中16种多环芳烃[J]. 环境化学, 2019, 38(12): 2797-2807. doi: 10.7524/j.issn.0254-6108.2019041705

    CrossRef Google Scholar

    Tao X, Quan X Q, Yu J G, et al. Analysis of 16 polycyclic aromatic hydrocarbons in soil with accelerated solvent extraction, rotary evaporation for obtain a constant volume and high performance liquid chromatography[J]. Environmental Chemistry, 2019, 38(12): 2797-2807. doi: 10.7524/j.issn.0254-6108.2019041705

    CrossRef Google Scholar

    [17] 张小辉, 王晓雁. 气相色谱-质谱联用法测定土壤中16种多环芳烃[J]. 岩矿测试, 2010, 29(5): 535-538. doi: 10.3969/j.issn.0254-5357.2010.05.012

    CrossRef Google Scholar

    Zhang X H, Wang X Y. Determination of 16 polycyclic aromatic hydrocarbons in soils by gas chromatography-mass spectrometry[J]. Rock and Mineral Aanlysis, 2010, 29(5): 535-538. doi: 10.3969/j.issn.0254-5357.2010.05.012

    CrossRef Google Scholar

    [18] 王海娇, 王娜, 宋丽华, 等. GC-MS-MS法测定土壤中的16种多环芳烃[J]. 分析试验室, 2010, 29(S1): 412-414.

    Google Scholar

    Wang H J, Wang N, Song L H, et al. Determination of 16 polycyclic aromatic hydrocarbons in soil by GC-MS-MS[J]. Chinese Journal of Analysis Laboratory, 2010, 29(S1): 412-414.

    Google Scholar

    [19] Merritt D A, Brand W A, Hayes J M. Isotope-ratio-monitoring gas chromatography-mass spectrometry: Methods for isotopic calibration[J]. Organic Geochemistry, 1994, 21(6-7): 573-583. doi: 10.1016/0146-6380(94)90003-5

    CrossRef Google Scholar

    [20] Hayes J M, Freeman K H, Popp B N, et al. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes[J]. Organic Geochemistry, 1990, 16(4-6): 1115-1128. doi: 10.1016/0146-6380(90)90147-R

    CrossRef Google Scholar

    [21] Okuda T, Naraoka H, Ishiwatari R. Spearation of PAHs in environmental samples by use of solid-phase extraction system for carbon isotope analysis[J]. Journal of the Mass Spectrometry Society of Japan, 2000, 48(6): 387-394. doi: 10.5702/massspec.48.387

    CrossRef Google Scholar

    [22] O'Malley V P, Abrajanojr T A, Hellou J. Determination of the 13C/12C ratios of individual PAH from environmental samples: Can PAH sources be apportioned?[J]. Organic Geochemistry, 1994, 21(6-7): 809-822. doi: 10.1016/0146-6380(94)90022-1

    CrossRef Google Scholar

    [23] Delhomme O, Rieb E, Millet M. Solid-phase extraction and LC with fluorescence detection for analysis of PAHs in rainwater[J]. Chromatographia, 2007, 65(3-4): 163-171. doi: 10.1365/s10337-006-0144-z

    CrossRef Google Scholar

    [24] Kiss G, Varga-Puchony Z, Hlavay J. Determination of polycyclic aromatic hydrocarbons in precipitation using solid-phase extraction and column liquid chromato-graphy[J]. Journal of Chromatography A, 1996, 725: 261-272. doi: 10.1016/0021-9673(95)00940-X

    CrossRef Google Scholar

    [25] Liu X, Bi X, Mai B, et al. Separation of PAHs in aerosol by thin layer chromatography for compound-specific stable carbon isotope analysis[J]. Talanta, 2005, 66: 487-494. doi: 10.1016/j.talanta.2004.11.017

    CrossRef Google Scholar

    [26] Mazeas L, Budzinski H. Polycyclic aromatic hydrocarbon 13C/12C ratio measurement in petroleum and marine sediments: Application to standard reference materials and a sediment suspected of contamination from the Erika oil spill[J]. Journal of Chromatography A, 2001, 923: 165-176. doi: 10.1016/S0021-9673(01)00911-6

    CrossRef Google Scholar

    [27] Yan B, Abrajano T A, Bopp R F, et al. Combined application of δ13C and molecular ratios in sediment cores for PAH source apportionment in the New York/New Jersey harbor complex[J]. Organic Geochemistry, 2006, 37: 674-687. doi: 10.1016/j.orggeochem.2006.01.013

    CrossRef Google Scholar

    [28] Kim M. Stable carbon isotope ratio of polycyclic aromatic hydrocarbons (PAHs) in the environment: Validation of isolation and stable carbon isotope analysis methods[M]. Texas: Texas A & M University, 2004: 50-70.

    Google Scholar

    [29] 刘盛兰, 秦艳, 刘洪林, 等. 内蒙古草原土壤有机物提取分离及鉴定[J]. 土壤学报, 2017, 54(6): 1459-1470.

    Google Scholar

    Liu S L, Qin Y, Liu H L, et al. Isolation and identification of soil organic matter in Inner Mongolia grassland[J]. Acta Pedologica Sinica, 2017, 54(6): 1459-1470.

    Google Scholar

    [30] Naafs D F W, van Bergen P F, Boogert S J, et al. Solvent-extractable lipids in an acid andic forest soil; variations with depth and season[J]. Soil Biology and Biochemistry, 2004, 36: 297-308. doi: 10.1016/j.soilbio.2003.10.005

    CrossRef Google Scholar

    [31] Morley C P, Mainwaring K A, Doerr S H, et al. Organic compounds at different depths in a sandy soil and their role in water repellency[J]. Australian Journal of Soil Research, 2005, 43: 239-249. doi: 10.1071/SR04094

    CrossRef Google Scholar

    [32] Atanassova I, Doerr S. Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency[J]. European Journal of Soil Science, 2010, 61: 298-313. doi: 10.1111/j.1365-2389.2009.01224.x

    CrossRef Google Scholar

    [33] Kumar A, Chahal K K, Kataria D. Comparison of chemical composition of root and rhizosphere soil extracts of tagete spatula L. : GC-MS analysis[J]. Asian Journal of Chemistry, 2017, 29(4): 797-800. doi: 10.14233/ajchem.2017.20307

    CrossRef Google Scholar

    [34] 何文珊, 李琳, 李炎, 等. 生姜不同有机溶剂提取物的GC-MS分析[J]. 热带亚热带植物学报, 2001, 9(2): 154-158. doi: 10.3969/j.issn.1005-3395.2001.02.012

    CrossRef Google Scholar

    He W S, Li L, Li Y, et al. GC-MS analysis of different solvent extracts of ginger[J]. Journal of Tropical and Subtropical Botany, 2001, 9(2): 154-158. doi: 10.3969/j.issn.1005-3395.2001.02.012

    CrossRef Google Scholar

    [35] 罗庆, 王诗雨, 孙丽娜, 等. 同时加速溶剂萃取/气相色谱-质谱法测定植物中13种有机磷酸酯[J]. 分析测试学报, 2018, 37(1): 50-56. doi: 10.3969/j.issn.1004-4957.2018.01.008

    CrossRef Google Scholar

    Luo Q, Wang S Y, Sun L N, et al. Determination of determination of thirteen organophosphate esters in plants using gas chromatography-mass spectrometry with simultaneously accelerated solvent extraction[J]. Journal of Instrumental Analysis, 2018, 37(1): 50-56. doi: 10.3969/j.issn.1004-4957.2018.01.008

    CrossRef Google Scholar

    [36] Wise S A, Chesler S N, Hertz H S, et al. Chemically-bonded aminosilane stationary phase for the high-performance liquid chromatographic separation of polynuclear aromatic compounds[J]. Analytical Chemistry, 1977, 49(14): 2306-2310. doi: 10.1021/ac50022a049

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(2507) PDF downloads(111) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint