Citation: | XIE Man-man, LIU Mei-mei, WANG Shu-xian, LING Yuan, SUN Qing. Study on Separation of Polycyclic Aromatic Hydrocarbons in Soils for Compound-specific Carbon Isotope Analysis[J]. Rock and Mineral Analysis, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131 |
Tracing the source of polycyclic aromatic hydrocarbons (PAHs) by the compound-specific carbon isotope is becoming increasingly popular. For precise carbon isotope analysis, a pretreatment process is required to reduce co-outflow and unresolved complex mixture (UCM). Some existing studies require more instrumentation, such as high-performance liquid chromatography (HPLC). In addition, little attention has been paid to PAHs with a ring number less than 3.
To establish a good separation method of 16 PAHs for meeting the requirements of compound-specific carbon isotope analysis.
The effects of solid phase extraction (SPE) cartridges with amino and silica fillers were compared, and 10 eluent solvents were used on the separation, purification and enrichment effects of PAHs. Gas chromatography (GC) was used to test the separation and purification effect, and gas chromatography-isotope ratio mass spectrometry (GC-IRMS) was used to analyze compound-specific carbon isotopes.
More than 20% of the naphthalene and acenaphthene in the amino cartridge cannot be completely separated from the alkanes and unresolved peaks. The silica gel SPE cartridge has better impurity removal and separation effects than the amino cartridge. Choosing 1000mg/6mL silica gel SPE cartridge, using 6mL n-pentane to elute UCM and alkanes, and 5mL n-pentane-dichloromethane (70:30, V/V) to elute PAHs, and GC to conduct a preliminary inspection of the separation and purification effect, and GC-IRMS for individual carbon isotope analysis. The recovery of 16 kinds of PAHs was 79%-128%, the relative standard deviation was 2%-13% (1σ, n=6), and the analysis accuracy of the single carbon isotope ratio (δ13C) was 0.1‰-0.75‰.
The method greatly reduces the interferences of co-outflow and UCM to compound-specific carbon isotope analysis of PAHs, especially the low cyclic PAHs. No significant carbon isotope fractionation of PAHs is observed during purification, which satisfies compound-specific carbon isotope analysis requirements.
[1] | Ye X Q, Pan W Y, Li C M, et al. Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance[J]. Journal of Environmental Sciences, 2020, 91: 1-9. doi: 10.1016/j.jes.2019.12.015 |
[2] | Hou J, Yin W J, Li P, et al. Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function[J]. Journal of Hazardous Materials, 2019, 386: 121663. |
[3] | Tang J, An T C, Xiong J K, et al. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China[J]. Environmental Geochemistry and Health, 2017, 39: 1487-1499. doi: 10.1007/s10653-017-9936-3 |
[4] | 李玉芳, 潘萌, 顾涛, 等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586. Li Y F, Pan M, Gu T, et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586. |
[5] | 姜永海, 韦尚正, 席北斗, 等. PAHs在我国土壤中的污染现状及其研究进展[J]. 生态环境学报, 2009, 18(3): 1176-1181. doi: 10.3969/j.issn.1674-5906.2009.03.067 Jiang Y H, Wei S Z, Xi B D, et al. Polycyclic aromatic hydrocarbons (PAHs) pollution in soils in China: Recent advances and future prospects[J]. Ecology and Environmental Sciences, 2009, 18(3): 1176-1181. doi: 10.3969/j.issn.1674-5906.2009.03.067 |
[6] | 苑金鹏, 钟宁宁, 吴水平. 土壤中多环芳烃的稳定碳同位素特征及其对污染源示踪意义[J]. 环境科学学报, 2005, 25(1): 81-85. doi: 10.3321/j.issn:0253-2468.2005.01.014 Yuan J P, Zhong N N, Wu S P. Stable carbon isotopic composition of polycyclic aromatic hydrocarbons in soil and its implications for the pollutants tracing[J]. Acta Scientiae Circumstantiae, 2005, 25(1): 81-85. doi: 10.3321/j.issn:0253-2468.2005.01.014 |
[7] | 李琪, 李钜源, 窦月芹, 等. 淮河中下游沉积物PAHs的稳定碳同位素源解析[J]. 环境科学研究, 2012, 25(6): 672-677. Li Q, Li J Y, Dou Y Q, et al. Compound-specific stable carbon isotopic analysis on origins of PAHs in sediments from the middle and lower reaches of the Huaihe River[J]. Research of Environmental Sciences, 2012, 25(6): 672-677. |
[8] | 白慧玲, 彭林, 刘效峰, 等. 太原市工、商业区PM10中PAHs碳同位素组成及来源[J]. 环境科学研究, 2013, 26(12): 1276-1282. Bai H L, Peng L, Liu X F, et al. Carbon isotope compositions and source apportionment of PAHs associated with PM10 of industrial and commercial districts in Taiyuan City[J]. Research of Environmental Sciences, 2013, 26(12): 1276-1282. |
[9] | 焦杏春, 王广, 叶传永, 等. 应用单体碳同位素分析技术探析农田土壤中多环芳烃的植物降解过程[J]. 岩矿测试, 2014, 33(6): 863-870. Jiao X C, Wang G, Ye C Y, et al. Study on the phytodegradation of PAHs from farmland soil using compound-specific isotope analysis technique[J]. Rock and Mineral Analysis, 2014, 33(6): 863-870. |
[10] | Vasil'Chuk Y K, Belik A D, Budantseva N A, et al. Polycyclic aromatic hydrocarbons and carbon isotopes in a palsa peat (Bol 'shezemel' skaya Tundra)[J]. Eurasian Soil Science, 2021, 54(7): 999-1006. doi: 10.1134/S1064229321070139 |
[11] | Garbariene I, Garbaras A, Masalaite A, et al. Identification of wintertime carbonaceous fine particulate matter (PM2.5) sources in Kaunas, Lithuania using polycyclic aromatic hydrocarbons and stable carbon isotope analysis[J]. Atmospheric Environment, 2020, 237: 117673. doi: 10.1016/j.atmosenv.2020.117673 |
[12] | 陆燕, 王小云, 曹建平. 沉积物中16种多环芳烃单体碳同位素GC-C-IRMS测定[J]. 石油实验地质, 2018, 40(4): 532-537. Lu Y, Wang X Y, Cao J P. Compound-specific carbon stable isotope analysis of 16 polycyclic aromatic hydrocarbons in sediments by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS)[J]. Petroleum Geology and Experiment, 2018, 40(4): 532-537. |
[13] | 史兵方, 杨秀培, 唐婧, 等. 荧光法测定土壤中总的多环芳烃含量[J]. 环境科学导刊, 2007, 26(4): 91-93. doi: 10.3969/j.issn.1673-9655.2007.04.029 Shi B F, Yang X P, Tang J, et al. Determination of total polycyclic aromatic hydrocarbons in soil by fluorescence[J]. Environmental Science Survey, 2007, 26(4): 91-93. doi: 10.3969/j.issn.1673-9655.2007.04.029 |
[14] | 倪进治, 王军, 李小燕, 等. 超高效液相色谱荧光检测器测定土壤中多环芳烃[J]. 分析试验室, 2010, 29(5): 25-28. doi: 10.3969/j.issn.1000-0720.2010.05.007 Ni J Z, Wang J, Li X Y, et al. Determination of polycyclic aromatic hydrocarbons in soil by ultra performance liquid chromatography with a fluorescence detector[J]. Chinese Journal of Analysis Laboratory, 2010, 29(5): 25-28. doi: 10.3969/j.issn.1000-0720.2010.05.007 |
[15] | 张道来, 刘娜, 朱志刚, 等. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价[J]. 岩矿测试, 2016, 35(5): 521-529. Zhang D L, Liu N, Zhu Z G, et al. Sources and risk assessment of polycyclic aromatic hydrocarbon in surface sediments from typical coast of Shandong Peninsulia[J]. Rock and Mineral Analysis, 2016, 35(5): 521-529. |
[16] | 陶鑫, 全洗强, 俞建国, 等. 加速溶剂萃取-旋蒸定容-高效液相色谱法检测土壤中16种多环芳烃[J]. 环境化学, 2019, 38(12): 2797-2807. doi: 10.7524/j.issn.0254-6108.2019041705 Tao X, Quan X Q, Yu J G, et al. Analysis of 16 polycyclic aromatic hydrocarbons in soil with accelerated solvent extraction, rotary evaporation for obtain a constant volume and high performance liquid chromatography[J]. Environmental Chemistry, 2019, 38(12): 2797-2807. doi: 10.7524/j.issn.0254-6108.2019041705 |
[17] | 张小辉, 王晓雁. 气相色谱-质谱联用法测定土壤中16种多环芳烃[J]. 岩矿测试, 2010, 29(5): 535-538. doi: 10.3969/j.issn.0254-5357.2010.05.012 Zhang X H, Wang X Y. Determination of 16 polycyclic aromatic hydrocarbons in soils by gas chromatography-mass spectrometry[J]. Rock and Mineral Aanlysis, 2010, 29(5): 535-538. doi: 10.3969/j.issn.0254-5357.2010.05.012 |
[18] | 王海娇, 王娜, 宋丽华, 等. GC-MS-MS法测定土壤中的16种多环芳烃[J]. 分析试验室, 2010, 29(S1): 412-414. Wang H J, Wang N, Song L H, et al. Determination of 16 polycyclic aromatic hydrocarbons in soil by GC-MS-MS[J]. Chinese Journal of Analysis Laboratory, 2010, 29(S1): 412-414. |
[19] | Merritt D A, Brand W A, Hayes J M. Isotope-ratio-monitoring gas chromatography-mass spectrometry: Methods for isotopic calibration[J]. Organic Geochemistry, 1994, 21(6-7): 573-583. doi: 10.1016/0146-6380(94)90003-5 |
[20] | Hayes J M, Freeman K H, Popp B N, et al. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes[J]. Organic Geochemistry, 1990, 16(4-6): 1115-1128. doi: 10.1016/0146-6380(90)90147-R |
[21] | Okuda T, Naraoka H, Ishiwatari R. Spearation of PAHs in environmental samples by use of solid-phase extraction system for carbon isotope analysis[J]. Journal of the Mass Spectrometry Society of Japan, 2000, 48(6): 387-394. doi: 10.5702/massspec.48.387 |
[22] | O'Malley V P, Abrajanojr T A, Hellou J. Determination of the 13C/12C ratios of individual PAH from environmental samples: Can PAH sources be apportioned?[J]. Organic Geochemistry, 1994, 21(6-7): 809-822. doi: 10.1016/0146-6380(94)90022-1 |
[23] | Delhomme O, Rieb E, Millet M. Solid-phase extraction and LC with fluorescence detection for analysis of PAHs in rainwater[J]. Chromatographia, 2007, 65(3-4): 163-171. doi: 10.1365/s10337-006-0144-z |
[24] | Kiss G, Varga-Puchony Z, Hlavay J. Determination of polycyclic aromatic hydrocarbons in precipitation using solid-phase extraction and column liquid chromato-graphy[J]. Journal of Chromatography A, 1996, 725: 261-272. doi: 10.1016/0021-9673(95)00940-X |
[25] | Liu X, Bi X, Mai B, et al. Separation of PAHs in aerosol by thin layer chromatography for compound-specific stable carbon isotope analysis[J]. Talanta, 2005, 66: 487-494. doi: 10.1016/j.talanta.2004.11.017 |
[26] | Mazeas L, Budzinski H. Polycyclic aromatic hydrocarbon 13C/12C ratio measurement in petroleum and marine sediments: Application to standard reference materials and a sediment suspected of contamination from the Erika oil spill[J]. Journal of Chromatography A, 2001, 923: 165-176. doi: 10.1016/S0021-9673(01)00911-6 |
[27] | Yan B, Abrajano T A, Bopp R F, et al. Combined application of δ13C and molecular ratios in sediment cores for PAH source apportionment in the New York/New Jersey harbor complex[J]. Organic Geochemistry, 2006, 37: 674-687. doi: 10.1016/j.orggeochem.2006.01.013 |
[28] | Kim M. Stable carbon isotope ratio of polycyclic aromatic hydrocarbons (PAHs) in the environment: Validation of isolation and stable carbon isotope analysis methods[M]. Texas: Texas A & M University, 2004: 50-70. |
[29] | 刘盛兰, 秦艳, 刘洪林, 等. 内蒙古草原土壤有机物提取分离及鉴定[J]. 土壤学报, 2017, 54(6): 1459-1470. Liu S L, Qin Y, Liu H L, et al. Isolation and identification of soil organic matter in Inner Mongolia grassland[J]. Acta Pedologica Sinica, 2017, 54(6): 1459-1470. |
[30] | Naafs D F W, van Bergen P F, Boogert S J, et al. Solvent-extractable lipids in an acid andic forest soil; variations with depth and season[J]. Soil Biology and Biochemistry, 2004, 36: 297-308. doi: 10.1016/j.soilbio.2003.10.005 |
[31] | Morley C P, Mainwaring K A, Doerr S H, et al. Organic compounds at different depths in a sandy soil and their role in water repellency[J]. Australian Journal of Soil Research, 2005, 43: 239-249. doi: 10.1071/SR04094 |
[32] | Atanassova I, Doerr S. Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency[J]. European Journal of Soil Science, 2010, 61: 298-313. doi: 10.1111/j.1365-2389.2009.01224.x |
[33] | Kumar A, Chahal K K, Kataria D. Comparison of chemical composition of root and rhizosphere soil extracts of tagete spatula L. : GC-MS analysis[J]. Asian Journal of Chemistry, 2017, 29(4): 797-800. doi: 10.14233/ajchem.2017.20307 |
[34] | 何文珊, 李琳, 李炎, 等. 生姜不同有机溶剂提取物的GC-MS分析[J]. 热带亚热带植物学报, 2001, 9(2): 154-158. doi: 10.3969/j.issn.1005-3395.2001.02.012 He W S, Li L, Li Y, et al. GC-MS analysis of different solvent extracts of ginger[J]. Journal of Tropical and Subtropical Botany, 2001, 9(2): 154-158. doi: 10.3969/j.issn.1005-3395.2001.02.012 |
[35] | 罗庆, 王诗雨, 孙丽娜, 等. 同时加速溶剂萃取/气相色谱-质谱法测定植物中13种有机磷酸酯[J]. 分析测试学报, 2018, 37(1): 50-56. doi: 10.3969/j.issn.1004-4957.2018.01.008 Luo Q, Wang S Y, Sun L N, et al. Determination of determination of thirteen organophosphate esters in plants using gas chromatography-mass spectrometry with simultaneously accelerated solvent extraction[J]. Journal of Instrumental Analysis, 2018, 37(1): 50-56. doi: 10.3969/j.issn.1004-4957.2018.01.008 |
[36] | Wise S A, Chesler S N, Hertz H S, et al. Chemically-bonded aminosilane stationary phase for the high-performance liquid chromatographic separation of polynuclear aromatic compounds[J]. Analytical Chemistry, 1977, 49(14): 2306-2310. doi: 10.1021/ac50022a049 |
Purification recoveries of PAHs in each fraction by (a) amino and (b) silica gel SPE column
Chromatograms of different types of SPE column purification. a—Chromatogram of F1 by 500mg/3mL amino SPE column purification; b—Chromatogram of F1 by 500mg/3mL silica gel SPE column purification; c—Chromatogram of elution with pentane by 1000mg/6mL silica gel SPE column; d— Chromatogram of elution with n-hexane-DCM (70∶30, V/V) by 1000mg/6mL silica gel SPE column
Chromatograms of before and after clean in 2000ng spiked level. a—Chromatogram of impurities; b—Chromatogram of after clean in 2000ng spiked level. These compounds are 1—naphthalene; 2—dichlorodiphenyl; 3—acenaphthylene; 4—acenaphthene; 5—fluorene; 6—phenanthrene; 7—anthracene; 8—fluoranthene; 9—pyrene; 10—benzo(a)anthracene; 11—chrysene; 12—benzo(b)fluoranthene; 13—benzo(k)fluoranthene; 14—benzo(a)pyrene; 15—indeno(1, 2, 3-cd)pyrene; 16—dibenzo(a, h)anthracene; 17—benzo(g, h, i)perylene; 18—terphenyl