Geological Publishing House, Institute of Exploration Technology, Chinese Academy of Geological SciencesHost
2023 Vol. 50, No. 3
Article Contents

LI Yazhou, SUN Youhong, YE Yuting, WANG Yue, LI Xiaobing, WANG Chao, LAI Xingwen and LI Bing, . 2023. A brief analysis of inclination causes and preventing/correcting methods for ice hot-point drills. DRILLING ENGINEERING, 50(3): 8-20. doi: 10.12143/j.ztgc.2023.03.002
Citation: LI Yazhou, SUN Youhong, YE Yuting, WANG Yue, LI Xiaobing, WANG Chao, LAI Xingwen and LI Bing, . 2023. A brief analysis of inclination causes and preventing/correcting methods for ice hot-point drills. DRILLING ENGINEERING, 50(3): 8-20. doi: 10.12143/j.ztgc.2023.03.002

A brief analysis of inclination causes and preventing/correcting methods for ice hot-point drills

More Information
  • The hot-point drillis often tend to tilt in ice drilling, which results in deviation from the target ice and failure to complete the scheduled drilling mission. To this end, the causes for the inclination of hot-point drills are anaylized and categorized into uneven heating of the ice at the bottom of the thermal head, poor stability of the hot-point drill structure, higher speed of cable unwinding than penetration speed and oversized borehole diameter. The methods of preventing and correcting the inclination in hot-point drilling are summarized, including the thermal method, the gravity method, the buoyancy method, the push method, the centralizer method, the guide rod method and the borehole diameter reduction method, so as to lay a foundation for further research on preventing and correcting the inclination of hot-point drills.
  • 加载中
  • [1] Cuffey K M, Paterson W S B. The Physics of Glaciers (The Fourth Edition)[M]. Oxford: Butterworth-Heinemann, 2010.

    Google Scholar

    [2] [2] 秦大河,任贾文.南极冰川学[M].北京:科学出版社,2001.QIN Dahe, REN Jiawen. Antarctica Glaciology[M]. Beijing: Science Press, 2001.

    Google Scholar

    [3] [3] 姚檀栋.冰芯研究与全球变化[J].中国科学院院刊,1996,11(5):368-371.

    Google Scholar

    YAO Tandong. Ice core research and global change[J]. Bulletin of Chinese Academy of Sciences, 1996,11(5):368-371.

    Google Scholar

    [4] [4] 王宁练,姚檀栋.冰芯对于过去全球变化研究的贡献[J].冰川冻土,2003,25(3):275-287.

    Google Scholar

    WANG Ninglian, YAO Tandong. Contributions of ice core to the past global change research[J]. Journal of Glaciology and Geocryology, 2003,25(3):275-287.

    Google Scholar

    [5] [5] Talalay P G. Thermal Ice Drilling Technology[M]. Singapore: Springer Singapore Pte Ltd., 2020.

    Google Scholar

    [6] [6] 李亚洲.冰层热融钻进机理研究及冰下湖钻探用热融钻头研制[D].长春:吉林大学,2021.LI Yazhou. Research on the mechanism of ice hot-point drilling process and development of thermal heads for subglacial lakes accessing [D]. Changchun: Jilin University, 2021.

    Google Scholar

    [7] [7] Wade F A. The physical aspects of the Ross Ice Shelf[J]. Proceedings of the American Philosophical Society, 1945,89(1):160-173.

    Google Scholar

    [8] [8] Nizery A. Electrothermic rig for the boring of glaciers[J]. Eos, Transactions American Geophysical Union, 1951,32(1):66-72.

    Google Scholar

    [9] [9] Gerrard J A F, Perutz M F, Roch A. Measurement of the velocity distribution along a vertical line through a glacier[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1952,213(1115):546-558.

    Google Scholar

    [10] [10] LaChapelle E. A simple thermal ice drill[J]. Journal of Glaciology, 1963,4(35):637-642.

    Google Scholar

    [11] [11] Gillet F. Steam, hot-water and electrical thermal drills for temperate glaciers[J]. Journal of Glaciology, 1975,14(70):171-179.

    Google Scholar

    [12] [12] Zimmerman W, Bonitz R, Feldman J. Cryobot: An ice penetrating robotic vehicle for Mars and Europa[C]//2001 IEEE Aerospace Conference Proceedings. Big Sky, MT, USA, 2001.

    Google Scholar

    [13] [13] Talalay P G, Zagrodnov V S, Markov A N, et al. Recoverable autonomous sonde (RECAS) for environmental exploration of Antarctic subglacial lakes: General concept[J]. Annals of Glaciology, 2014,55(65):23-30.

    Google Scholar

    [14] [14] Winebrenner D P, Elam W T, Miller V, et al. A thermal ice-melt probe for exploration of Earth analogs to Mars, Europa and Enceladus[C]//44th lunar and planetary science conference. Woodlands, Texas, USA, 2013.

    Google Scholar

    [15] [15] Dachwald B, Mikucki J, Tulaczyk S, et al. IceMole: A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems[J]. Annals of Glaciology, 2014,55(65):14-22.

    Google Scholar

    [16] [16] Wirtza M, Hildebrandt M. IceShuttle Teredo: An ice-penetrating robotic system to transport an exploration AUV into the ocean of Jupiter''s moon Europa[C]//67th International Astronautical Congress (IAC). Guadalajara, Mexico, 2016.

    Google Scholar

    [17] [17] Dirk H, Peter L, Simon Z, et al. An efficient melting probe for glacial research[J]. Annals of Glaciology, 2020,62(84):171-174.

    Google Scholar

    [18] [18] Kelty J R. An in situ sampling thermal probe for studying global ice sheets[D]. Omaha: University of Nebraska, 1995.

    Google Scholar

    [19] [19] Talalay P G, Li Y, Sysoev M A, et al. Thermal tips for ice hot-point drilling: Experiments and preliminary thermal modeling[J]. Cold Regions Science and Technology, 2019,160:97-109.

    Google Scholar

    [20] [20] Schüller K, Kowalski J, Råback P. Curvilinear melting—A preliminary experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2016,92:884-892.

    Google Scholar

    [21] [21] Schüller K, Kowalski J. Spatially varying heat flux driven close-contact melting—A Lagrangian approach[J]. International Journal of Heat and Mass Transfer, 2017,115:1276-1287.

    Google Scholar

    [22] [22] Li Y, Talalay P G, Fan X, et al. Modeling of hot-point drilling in ice[J]. Annals of Glaciology, 2021,62(85-86):360-373.

    Google Scholar

    [23] [23] Hiroyuki K, Akio S, Seiji O, et al. Direct contact melting with asymmetric load[J]. International Journal of Heat and Mass Transfer, 2005,48(15):3221-3230.

    Google Scholar

    [24] [24] Kohno M, Fujii Y, Hirata T. Chemical composition of volcanic glasses in visible tephra layers found in a 2503 m deep ice core from Dome Fuji, Antarctica[J]. Annals of Glaciology, 2004,39:576-584.

    Google Scholar

    [25] [25] Narcisi B, Petit J R, Langone A. Last glacial tephra layers in the Talos Dome ice core (peripheral East Antarctic Plateau), with implications for chronostratigraphic correlations and regional volcanic history[J]. Quaternary Science Reviews, 2017,165:111-126.

    Google Scholar

    [26] [26] Aamot H W C. Instrumented probes for deep glacial investigations[J]. Journal of Glaciology, 1968,7(50):321-328.

    Google Scholar

    [27] [27] Philberth K. The thermal probe deep-drilling method by EGIG in 1968 at Station Jarl-Joset, Central Greenland[C]//Ice-core Drilling: Proceeding of the Symposium. University of Nebraska, Lincoln, USA, 1976.

    Google Scholar

    [28] [28] Philberth K. Die thermische Tiefbohrung in Station Jarl-Joset und ihre theoretische Auswertung[J]. Polarforschung, 1984,54(1):43-49.

    Google Scholar

    [29] [29] Kowalski J, Linder P, Zierke S, et al. Navigation technology for exploration of glacier ice with maneuverable melting probes[J]. Cold Regions Science and Technology, 2016,123:43-70.

    Google Scholar

    [30] [30] Yazhou L, Yang Y, Xiaopeng F, et al. Power consumption of a Philberth thermal probe in ice sheet exploration[J]. Cold Regions Science and Technology, 2020,177:103-114.

    Google Scholar

    [31] [31] Aamot H W C. The Philberth probe for investigating polar ice caps, 119[R]. Hanover: USA CREEL, 1967.

    Google Scholar

    [32] [32] Philberth K. Über zwei Elktro-Schmelzsonden mit Vertikal-Stabilisierung[J]. Polarforschung, 1964,34(1-2):278-280.

    Google Scholar

    [33] [33] German L, Mikucki J A, Welch S A, et al. Validation of sampling antarctic subglacial hypersaline waters with an electrothermal ice melting probe (IceMole) for environmental analytical geochemistry[J]. International Journal of Environmental Analytical Chemistry, 2019,101(15):2654-2667.

    Google Scholar

    [34] [34] Lyons W B, Mikucki J A, German L A, et al. The geochemistry of englacial brine from Taylor glacier, Antarctica[J]. Journal of Geophysical Research: Biogeosciences, 2019,124(3):633-648.

    Google Scholar

    [35] [35] Miller M M. The application of electro-thermic boring methods to englacial research with special reference to the Juneau Icefield investigations in 1952-53,4[R].Institute of North America, 1953.

    Google Scholar

    [36] [36] Aamot H W C. Pendulum steering for thermal probes in glaciers, 116[R]. Hanover: USA CREEL, 1967.

    Google Scholar

    [37] [37] Aamot H W C. Development of a vertically stabilized thermal probe for studies in and below ice sheets[J]. Journal of Engineering for Industry, 1970,92(2):263-268.

    Google Scholar

    [38] [38] Hansen B L, Kersten L. An in-situ sampling thermal probe[C]//Proceeding of the Second International Workshop/Symposium on Ice Drilling Technology. Calgary, Alberta, Canada, 1984.

    Google Scholar

    [39] [39] Morton B R, Lightfoot R M. A prototype meltsonde probe-design and experience, 14[R]. Australian Antarctic Division, Department of Science, 1975.

    Google Scholar

    [40] [40] Tibcken M, Dimmler W. Einsatz einer durchschmelzsonde (susi) zum transporteiner kommerziellen CTD-Sonde unter das schelfeis[J]. Polarforsch, 1997,219:106-112.

    Google Scholar

    [41] [41] Bentley C R, Koci B R, Augustin L, et al. Ice Drilling and Coring//Drilling in Extreme Environments: Penetration and Sampling on Earth and Other Planets[M]. Weinheim: WILEY-VCH Verlag GmbH & Co., KGaA, 2009:221-308.

    Google Scholar

    [42] [42] Zagorodnov V, Tyler S, Holland D, et al. New technique for access-borehole drilling in shelf glaciers using lightweight drills[J]. Journal of Glaciology, 2014,60(223):935-944.

    Google Scholar

    [43] [43] Aamot H W C. A buoyancy-stabilized hot-point drill for glacier studies[J]. Journal of Glaciology, 1968,7(51):493-498.

    Google Scholar

    [44] [44] Classen D F. Thermal drilling and deep ice-temperature measurements on the Fox Glacier, Yukon[D]. Vancouver: The University of British Columbia, Department of Geophysics, 1970.

    Google Scholar

    [45] [45] Hooke R L. University of Minnesota ice drill[C]//Ice-Core Drilling: Proceeding of the Symposium. University of Nebraska, Lincoln, USA, 1976.

    Google Scholar

    [46] [46] Hooke R L, Alexander J E C, Gustafson R J. Temperature profiles in the Barnes Ice Cap, Baffin Island, Canada, and heat flux from the subglacial terrane[J]. Canadian Journal of Earth Sciences, 1980,17(9):1174-1188.

    Google Scholar

    [47] [47] 柴麟,张凯,刘宝林,等.自动垂直钻井工具分类及发展现状[J].石油机械,2020,48(1):1-11.

    Google Scholar

    CHAI Lin, ZHANG Kai, LIU Baolin, et al. Classification and development status of automatic vertical drilling tools[J]. China Petroleum Machinery, 2020,48(1):1-11.

    Google Scholar

    [48] [48] 韩来聚,倪红坚,赵金海,等.机械式自动垂直钻井工具的研制[J].石油学报,2008,29(5):766-768.

    Google Scholar

    HAN Laiju, NI Hongjian, ZHAO Jinmei, et al. Development of mechanical tool for automatic vertical drilling[J]. Acta Petrolei Sinica, 2008,29(5):766-768.

    Google Scholar

    [49] [49] Morev V A, Pukhov V A, Yakovlev V M, et al. Equipment and technology for drilling in temperate glaciers[C]// Proceeding of the Second International Workshop/Symposium on Ice Drilling Technology. Calgary, Alberta, Canada, 1982.

    Google Scholar

    [50] [50] Zagorodnov V S, Zotikov I A. Kernovoe burenie na Shpitsbergene, 40[R]. Akademiia Nauk SSSR, Institut Geografii, 1981.

    Google Scholar

    [51] [51] Tyler S W, Holland D M, Zagorodnov V, et al. Using distributed temperature sensors to monitor an Antarctic ice shelf and sub-ice-shelf cavity[J]. Journal of Glaciology, 2013,59(215):583-591.

    Google Scholar

    [52] [52] Sharp R P. Thermal regimen of firn on upper seward glacier, Yukon territory, Canada[J]. Journal of Glaciology, 1951,1(9):476-487,491.

    Google Scholar

    [53] [53] Mathews W H. Glaciological research in Western Canada in 1956[J]. Canadian Alpine Journal, 1957,40:94-96.

    Google Scholar

    [54] [54] Mathews W H. Vertical distribution of velocity in Salmon glacier, British Columbia[J]. Journal of Glaciology, 1959,3(26):448-454.

    Google Scholar

    [55] [55] Grześ M. Non-cored hot point drills on Hans Glacier (Spitsbergen), method and first results[J]. Polish Polar Research, 1980,1(2-3):75-85.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(289) PDF downloads(33) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint