Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 4
Article Contents

LIN Jian-qi. Determination of Trace Mercury in Rocks by Dual-channel Atomic Fluorescence Spectrometry and Solid Sampling-Cold Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 512-521. doi: 10.15898/j.cnki.11-2131/td.202006180093
Citation: LIN Jian-qi. Determination of Trace Mercury in Rocks by Dual-channel Atomic Fluorescence Spectrometry and Solid Sampling-Cold Atomic Absorption Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 512-521. doi: 10.15898/j.cnki.11-2131/td.202006180093

Determination of Trace Mercury in Rocks by Dual-channel Atomic Fluorescence Spectrometry and Solid Sampling-Cold Atomic Absorption Spectrometry

  • BACKGROUND

    The detection of trace mercury in rocks typically provides biased and non-reliable results because of the complex internal unit cell structure, incomplete hot water bath acid hydrolysis extraction, volatilization loss, and contact pollution.

    OBJECTIVES

    To establish a more effective method for the determination of trace mercury concentrations in rocks.

    METHODS

    Dual-channel atomic fluorescence spectrometry (AFS) and domestic solid sampling-cold atomic absorption spectrometry (AAS) were used to detect the total concentration of trace mercury in rocks.

    RESULTS

    Under the optimized conditions of dual-channel AFS, the samples were extracted in a boiling water bath with 80% aqua regia solution for 50min. The current was 30mA, the negative high voltage was 280V, the carrier gas flow was 600mL/min, and the shielding gas flow was 1000mL/min. The concentration range was 0.05-2μg/L, and the linear correlation coefficient was greater than 0.999. The sample weight was 0.2g, method detection limit was 0.285μg/kg, and relative standard deviation was 7.3%-15.3%. For domestic solid sampling-cold AAS, the sample was determined by direct injection without chemical digestion. The carrier gas flow was 180mL/min, pyrolysis process was conducted for 60s at 700℃. The concentration range was determined to be 0.05-5ng, and the linear correlation coefficient was greater than 0.999. The sample weight was 0.1g, method detection limit was 0.046μg/kg, and relative standard deviation was 1.3%-4.2%.

    CONCLUSIONS

    The solid sampling-cold AAS was found to be more effective than dual-channel AFS in terms of operation, detection limit, and stability. It is more suitable for the determination of trace mercury in rocks.

  • 加载中
  • [1] 赵博, 张德会, 于蕾, 等. 从克拉克值到元素的地球化学性质或行为再到成矿作用[J]. 矿物岩石地球化学通报, 2014, 33(2): 252-261. doi: 10.3969/j.issn.1007-2802.2014.02.014

    CrossRef Google Scholar

    Zhao B, Zhang D H, Yu L, et al. From Clarke value to geochemical properties or behavior of elements to mineralization[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 252-261. doi: 10.3969/j.issn.1007-2802.2014.02.014

    CrossRef Google Scholar

    [2] 周子俣, 罗先熔, 文美兰, 等. 河南洛宁县石龙山多金属金矿区土壤热释汞测量及找矿预测[J]. 矿物岩石, 2018, 38(2): 49-58.

    Google Scholar

    Zhou Z Y, Luo X R, Wen M L, et al. Soil thermomercury release survey and prospecting prediction of Shilongshan polymetallic gold deposit in Luoning County, Henan Province[J]. Mineralogy and Petrology, 2018, 38(2): 49-58.

    Google Scholar

    [3] 边鹏. 汞的找矿指导作用[J]. 矿物学报, 2015, 35(增刊1): 566.

    Google Scholar

    Bian P. Guiding role of mercury in ore prospecting[J]. Acta Mineralogica Sinica, 2015, 35(Supplement 1): 566.

    Google Scholar

    [4] 李惠, 张国义, 禹斌, 等. 构造叠加晕找盲矿法及其在矿山深部找矿效果[J]. 地学前缘, 2010, 17(1): 287-293.

    Google Scholar

    Li H, Zhang G Y, Yu B, et al. Structural super imposed halos method for prospeting blind or body in the deep of districts[J]. Earth Science Frontiers, 2010, 17(1): 287-293.

    Google Scholar

    [5] 迟清华. 汞在地壳、岩石和疏松沉积物中的分布[J]. 地球化学, 2004, 33(6): 641-649. doi: 10.3321/j.issn:0379-1726.2004.06.013

    CrossRef Google Scholar

    Chi Q H. Distribution of mercury in the Earth's crust, rocks and loose sediments[J]. Geochimica, 2004, 33(6): 641-649. doi: 10.3321/j.issn:0379-1726.2004.06.013

    CrossRef Google Scholar

    [6] 梁斌, 詹蔚. 探讨环境中冷原子吸收法对汞的测定[J]. 环境与发展, 2018(2): 121, 123.

    Google Scholar

    Liang B, Zhan W. Determination of mercury by cold atomic absorption spectrometry in the environment[J]. Environment and Development, 2018(2): 121, 123.

    Google Scholar

    [7] 张礼仲, 李文贵, 李岚, 等. ICP法与AA法测定铅、砷、汞的比对分析[J]. 食品安全导刊, 2017(6): 67-69.

    Google Scholar

    Zhang L Z, Li W G, Li L, et al. Comparative analysis of ICP method and AA method for determination of lead, arsenic and mercury[J]. China Food Safety Magazine, 2017(6): 67-69.

    Google Scholar

    [8] 巧宁强, 薛志伟, 王刚峰, 等. 索氏提取-原子荧光光谱法测定含油岩心中的汞和砷[J]. 岩矿测试, 2019, 38(4): 461-467.

    Google Scholar

    Qiao N Q, Xue Z W, Wang G F, et al. Soxhlet extract-atomic fluorescence spectrometry for the determination of mercury and arsenic in oil-bearing cores[J]. Rock and Mineral Analysis, 2019, 38(4): 461-467.

    Google Scholar

    [9] 陆迁树, 段文, 李发刚, 等. 冷原子汞发生-原子荧光光谱法测定地球化学样品中痕量汞[J]. 理化检验(化学分册), 2019, 55(3): 338-342.

    Google Scholar

    Lu Q S, Duan W, Li F G, et al. Determination of trace mercury in geochemical samples by cold atomic mercury-atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2019, 55(3): 338-342.

    Google Scholar

    [10] 王谦, 郑琳, 任飞, 等. 悬浮液进样-全反射X射线荧光光谱法测定膏霜类化妆品中的铅、砷和汞[J]. 分析化学, 2018, 46(4): 517-523.

    Google Scholar

    Wang Q, Zheng L, Ren F, et al. Determination of lead, arsenic and mercury in cream cosmetics by suspension sampling-total reflection X-ray fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 517-523.

    Google Scholar

    [11] 卢水淼, 李鹰, 李剑, 等. 电感耦合等离子体质谱法测定地表水中汞及其记忆效应的消除[J]. 理化检验(化学分册), 2019, 55(10): 1222-1224.

    Google Scholar

    Lu S M, Li Y, Li J, et al. Determination of mercury and its memory effects in surface water by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(10): 1222-1224.

    Google Scholar

    [12] 林少美, 林彩琴, 郑三燕, 等. 电感耦合等离子体质谱法测定苦丁茶中的铅、镉、砷、汞和铬[J]. 中国卫生检验杂志, 2020(1): 18-20.

    Google Scholar

    Lin S M, Lin C Q, Zheng S Y, et al. Determination of lead, cadmium, arsenic, mercury and chromium in Bittersweet tea by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2020(1): 18-20.

    Google Scholar

    [13] 林海兰, 朱日龙, 于磊, 等. 水浴消解-原子荧光光谱法测定土壤和沉积物中砷、汞、硒、锑和铋[J]. 光谱学与光谱分析, 2020, 40(5): 1528-1533.

    Google Scholar

    Lin H L, Zhu R L, Yu L, et al. Water bath digestion-determination of arsenic, mercury, selenium, antimony and bismuth in soil and sediment by atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1528-1533.

    Google Scholar

    [14] 张宏康, 邵丹, 王中瑗, 等. 食品中痕量汞的检测方法研究进展[J]. 食品安全质量检测学报, 2019, 10(5): 1230-1235.

    Google Scholar

    Zhang H K, Shao D, Wang Z Y, et al. Research progress on determination methods of trace mercury in food[J]. Journal of Food Safety & Quality, 2019, 10(5): 1230-1235.

    Google Scholar

    [15] 杨常青, 萧达辉, 康菲, 等. 氧弹分解-原子荧光法快速测定煤中汞方法的改进[J]. 分析试验室, 2017, 36(10): 1184-1187.

    Google Scholar

    Yang C Q, Xiao D H, Kang F, et al. An improved method for the rapid determination of mercury in coal by oxygen bomb decomposition and atomic fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(10): 1184-1187.

    Google Scholar

    [16] 颜巧丽, 李悟庆, 刘天一, 等. 电感耦合等离子体质谱法测定汞元素校准曲线线性探讨[J]. 安徽农业科学, 2020(11): 202-204. doi: 10.3969/j.issn.0517-6611.2020.11.056

    CrossRef Google Scholar

    Yang Q L, Li W Q, Liu T Y, et al. Determination of mercury calibration curve linearity by inductively coupled plasma mass spectrometry[J]. Journal of Anhui Agricultural Sciences, 2020(11): 202-204. doi: 10.3969/j.issn.0517-6611.2020.11.056

    CrossRef Google Scholar

    [17] 李耀磊, 金红宇, 韩笑, 等. 电感耦合等离子体质谱测定法中汞元素记忆效应与稳定性研究[J]. 中国药学杂志, 2019, 54(1): 53-57.

    Google Scholar

    Li Y L, Jin H Y, Han X, et al. Memory effects and stability of mercury in inductively coupled plasma mass spectrometry[J]. Chinese Pharmaceutical Journal, 2019, 54(1): 53-57.

    Google Scholar

    [18] Linsa S S, Virgensa C F, dos Santosa W N L, et al. On-line solid phase extraction system using an ion imprinted polymer based on dithizone chelating for selective preconcentration and determination of mercury(Ⅱ) in natural waters by CV-AFS[J]. Microchemical Journal, 2019, 150: 104075-104075. doi: 10.1016/j.microc.2019.104075

    CrossRef Google Scholar

    [19] 周慧君, 帅琴, 黄云杰, 等. 双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞[J]. 岩矿测试, 2017, 36(5): 474-480, 449.

    Google Scholar

    Zhou H J, Shuai Q, Huang Y J, et al. Determination of trace mercury in geological samples by solid phase extraction with modified GO/Chitosan composite microsphere[J]. Rock and Mineral Analysis, 2017, 36(5): 474-480, 449.

    Google Scholar

    [20] 乔磊, 叶永盛, 李鹰, 等. 固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属[J]. 岩矿测试, 2020, 39(1): 99-107.

    Google Scholar

    Qiao L, Ye Y S, Li Y, et al. Analysis of heavy metals in soil by electrothermal evaporation inductively coupled plasma mass spectrometry with direct solid injection[J]. Rock and Mineral Analysis, 2020, 39(1): 99-107.

    Google Scholar

    [21] 罗荣根. 应用固体测汞仪直接测定载金碳中的总汞[J]. 岩矿测试, 2016, 35(4): 420-424.

    Google Scholar

    Luo R G. Direct determination of total mercury in gold-bearing carbon by solid mercury meter[J]. Rock and Mineral Analysis, 2016, 35(4): 420-424.

    Google Scholar

    [22] 罗明贵, 谢毓群, 李通耀, 等. 固体进样直接测定法测定锌精矿中汞[J]. 冶金分析, 2020, 40(9): 57-62.

    Google Scholar

    Luo M G, Xie Y Q, Li T Y, et al. Determination of mercury in zinc concentrate by direct solid injection method[J]. Metallurgical Analysis, 2020, 40(9): 57-62.

    Google Scholar

    [23] 陆建平, 覃梦琳, 布静龙, 等. 分散液液微萃取-原子荧光光度法测定大米中的汞[J]. 光谱学与光谱分析, 2017, 37(11): 3606-3609.

    Google Scholar

    Lu J P, Qin M L, Bu J L, et al. Determination of mercury in rice by dispersive liquid-liquid microextraction atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3606-3609.

    Google Scholar

    [24] 李明章, 林建奇. 微波消解-原子荧光光谱法同时测定食醋中的砷和汞[J]. 理化检验(化学分册), 2016, 52(2): 222-225.

    Google Scholar

    Li M Z, Lin J Q. Simultaneous determination of arsenic and mercury in vinegar by microwave digestion and atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(2): 222-225.

    Google Scholar

    [25] 李自强, 胡斯宪, 李小英, 等. 水浴浸提-氢化物发生-原子荧光光谱法同时测定土壤污染普查样品中砷和汞[J]. 理化检验(化学分册), 2018, 54(4): 480-483.

    Google Scholar

    Li Z Q, Hu S X, Li X Y, et al. Simultaneous determination of arsenic and mercury in soil pollution census samples by water bath extraction hydride generation atomic fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 480-483.

    Google Scholar

    [26] 谭丽娟, 唐玉霜, 黄利宁, 等. 氢化物发生-原子荧光光谱法测定1: 5万区域地质调查样品中的As、Sb、Bi、Hg等4种元素[J]. 中国无机分析化学, 2019, 9(1): 19-23.

    Google Scholar

    Tan L J, Tang Y S, Huang L N, et al. Determination of As, Sb, Bi and Hg in 1: 50000 regional geological survey samples by hydride generation-atomic fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1): 19-23.

    Google Scholar

    [27] 李丹, 于静, 钱玉萍. 氢化物发生原子荧光法测定陆地水中痕量汞[J]. 资源环境与工程, 2009(6): 867-869.

    Google Scholar

    Li D, Yu J, Qian Y P. Determination of trace mercury in terrestrial water by hydride generation atomic fluorescence spectrometry[J]. Resources Environment & Engineering, 2009(6): 867-869.

    Google Scholar

    [28] 张馨予, 王劲榕. 氢化物发生-原子荧光光谱法测定纯铝中的痕量汞[J]. 云南冶金, 2011, 40(6): 53-56.

    Google Scholar

    Zhang X Y, Wang J R. Determination of trace mercury in pure aluminum by hydride generation-atomic fluorescence spectrometry[J]. Yunnan Metallurgy, 2011, 40(6): 53-56.

    Google Scholar

    [29] 张锦茂, 张勤. 冷原子无色散原子荧光法测定地球化学样品中的微量汞[J]. 岩矿测试, 1986, 15(1): 37-41.

    Google Scholar

    Zhang J M, Zhang Q. Determination of trace mercury in geochemical samples by cold atom dispersion-free atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 1986, 15(1): 37-41.

    Google Scholar

    [30] 余文丽, 王振生, 王小强. 氢化物发生-原子荧光法测田螺中硒、汞[J]. 当代化工, 2020(1): 204-207.

    Google Scholar

    Yu W L, Wang Z S, Wang X Q. Determination of selenium and mercury in snails by hydride generation-atomic fluorescence method[J]. Contemporary Chemical Industry, 2020(1): 204-207.

    Google Scholar

    [31] 林建奇. 直接进样测汞仪测定地质样品中汞的应用研究[J]. 地质装备, 2020, 21(2): 27-30.

    Google Scholar

    Lin J Q. Study on the application of direct injection mercury detector in the determination of mercury in geological samples[J]. Equipment for Geotechnical Engineering, 2020, 21(2): 27-30.

    Google Scholar

    [32] 路新燕, 陈纯, 高勇, 等. 固体进样-冷原子吸收法直接测定土壤中总汞[J]. 中国环境监测, 2016, 32(3): 126-128.

    Google Scholar

    Lu X Y, Chen C, Gao Y, et al. Direct determination of total mercury in soil by solid sampling cold atomic absorption spectrometry[J]. Environmental Monitoring in China, 2016, 32(3): 126-128.

    Google Scholar

    [33] 孙有娥, 李一辰, 程春艳, 等. 测汞仪固体直接进样测定土壤中总汞[J]. 化学分析计量, 2018, 27(6): 91-94.

    Google Scholar

    Sun Y E, Li Y C, Cheng C Y, et al. Determination of total mercury in soil by solid direct injection mercury analyzer[J]. Chemical Analysis and Meterage, 2018, 27(6): 91-94.

    Google Scholar

    [34] 宋姗娟, 刘彬, 赵颖. 水浴消解-原子荧光法同时测定土壤中的汞、砷、硒、锑[J]. 土壤通报, 2020, 51(3): 630-633.

    Google Scholar

    Song S J, Liu B, Zhao Y. Simultaneous determination of mercury, arsenic, selenium and antimony in soil by water bath digestion atomic fluorescence spectrometry[J]. Soil Bulletin, 2020, 51(3): 630-633.

    Google Scholar

    [35] 宋永刚, 于彩芬, 张玉凤, 等. 直接测汞仪与原子荧光法测定海洋底栖生物中痕量汞的对比研究[J]. 分析科学学报, 2016, 32(2): 288-290.

    Google Scholar

    Song Y G, Yu C F, Zhang Y F, et al. Comparative study on the determination of trace mercury in marine benthos by direct mercury analyzer and atomic fluorescence spectrometry[J]. Journal of Analytical Science, 2016, 32(2): 288-290.

    Google Scholar

    [36] 秦祎芳, 张红云, 高敬铭, 等. 原子荧光光谱法和快速测汞仪法测定粮食中汞的对比研究[J]. 食品科技, 2020, 45(8): 282-285.

    Google Scholar

    Qin Y F, Zhang H Y, Gao J M, et al. Comparative study on determination of mercury in grain by atomic fluorescence spectrometry and rapid mercury analyzer[J]. Food Science and Technology, 2020, 45(8): 282-285.

    Google Scholar

    [37] 宋永刚, 于彩芬, 张玉凤, 等. 脉红螺中痕量汞分析方法的研究[J]. 中国无机分析化学, 2016, 6(1): 1-5.

    Google Scholar

    Song Y G, Yu C F, Zhang Y F, et al. Study on the analysis method of trace mercury in red snail[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 1-5.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(2992) PDF downloads(123) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint