Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 4
Article Contents

MIAO Xu, SHI Miao, WANG Li-sheng. Mineral Composition and Genesis of Black Quartzite Jade from Linwu County, Hunan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 522-531. doi: 10.15898/j.cnki.11-2131/td.202012030155
Citation: MIAO Xu, SHI Miao, WANG Li-sheng. Mineral Composition and Genesis of Black Quartzite Jade from Linwu County, Hunan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 522-531. doi: 10.15898/j.cnki.11-2131/td.202012030155

Mineral Composition and Genesis of Black Quartzite Jade from Linwu County, Hunan Province

More Information
  • BACKGROUND

    Black quartzite jade is a type of commonly and commercially available jade. Many areas produce this gem.

    OBJECTIVES

    To analyze the gemological characteristics and mineral composition of the jade samples and to discuss their genesis.

    METHODS

    Conventional gemological tests, infrared spectrum tests, polarizing microscopy, X-ray powder diffraction analysis, X-ray fluorescence spectrometry, and inductively coupled plasma mass spectrometry were used.

    RESULTS

    Black quartzite jade from the Linwu County, Hunan Province, showed a medium-fine grain texture. The polarizing microscopy results revealed many crytalloblastic or palimpsest textures. The content of the main mineral quartz was 44.7%, the content of secondary minerals (mica and feldspar) was 31.0%, and the content of clay minerals was 12.7%. Minor organic carbon, iron minerals, andalusite, almandine, and pyrite were also observed.

    CONCLUSIONS

    Based on the main textures, structures, configuration features, and chemical compositions, the studied samples are regarded as typical low-to-moderate temperature hydrothermal regional metamorphic rocks, which are classified as greenschist facies. The source rock was composed of sedimentary rocks abundant with aluminum, quartz, and feldspar. The tectonic environment for its formation belonged to the continental margin. This study provides technical support for the identification of the mineral composition of quartzite jades from the Linwu County, Hunan Province.

  • 加载中
  • [1] 张蓓莉. 系统宝石学[M]. 北京: 地质出版社, 2006: 374-379.

    Google Scholar

    Zhang B L. Systematic gemmology[M]. Beijing: Geological Publishing House, 2006: 374-379.

    Google Scholar

    [2] 王长秋, 张丽葵. 珠宝玉石学[M]. 北京: 地质出版社, 2017: 560-569.

    Google Scholar

    Wang C Q, Zhang L K. Gemology[M]. Beijing: Geological Publishing House, 2017: 560-569.

    Google Scholar

    [3] 李胜荣. 结晶学与矿物学[M]. 北京: 地质出版社, 2008: 188-190.

    Google Scholar

    Li S R. Crystallography and mineralogy[M]. Beijing: Geology Publishing House, 2008: 188-190.

    Google Scholar

    [4] 刘晓亮, 孟庆鹏, 陈熙皓, 等. 经变质作用形成的石英质玉的宝石学特征[J]. 宝石和宝石学杂志, 2020, 22(1): 33-38.

    Google Scholar

    Liu X L, Meng Q P, Chen X H, et al. Gemmological characteristics of quartzose jade by metamorphism[J]. Journal of Gems and Gemmology, 2020, 22(1): 33-38.

    Google Scholar

    [5] 周丹怡, 陈华, 陆太进, 等. 广西桂林不同颜色石英质玉的宝石学特征对比研究[C]//中国国际珠宝首饰学术交流会论文集(2017). 2017: 215-219.

    Google Scholar

    Zhou D Y, Chen H, Lu T J, et al. Comparative study on gemmological characteristics of different color quartz jade in Guilin, Guangxi[C]//Proceedings of China International Jewelry Academic Exchange Conference (2017). 2017: 215-219.

    Google Scholar

    [6] 王琦. 石英质玉的分类特征与市场现状[J]. 中国地名, 2020(2): 39.

    Google Scholar

    Wang Q. Classification characteristics and market status of quartz jade[J]. China Place Name, 2020(2): 39.

    Google Scholar

    [7] 王濮, 潘兆橹, 翁玲宝. 系统矿物学[M]. 北京: 地质出版社, 1984: 169-180.

    Google Scholar

    Wang P, Pan Z L, Weng L B. Systematic mineralogy[M]. Beijing: Geological Publishing House, 1984: 169-180.

    Google Scholar

    [8] 姚凤良, 孙丰月. 矿床学教程[M]. 北京: 地质出版社, 2006: 215-227.

    Google Scholar

    Yao F L, Sun F Y. Course in mineral deposits[M]. Beijing: Geological Publishing House, 2006: 215-227.

    Google Scholar

    [9] 张高鑫, 刘建朝, 张海东, 等. 陕西勉略宁地块车渡磁铁石英岩型金矿床多期成矿作用[J]. 地球科学与环境学报, 2020, 42(3): 355-365.

    Google Scholar

    Zhang G X, Liu J C, Zhang H D, et al. Multistage mineralization of Chedu magnetite quartzite gold deposit in Mianluening Block of Shannxi, China[J]. Journal of Earth Sciences and Environment, 2020, 42(3): 355-365.

    Google Scholar

    [10] 李孝文, 曹淑云, 刘建华, 等. 北阿尔金余石山含金石英脉地质构造特征与流体作用[J]. 大地构造与成矿学, 2021. doi: 10.16539/j.ddgzyckx.2020.05.014:1-33.

    CrossRef Google Scholar

    Li X W, Cao S Y, Liu J H, et al. Geological structure characteristics and fluid activity of the gold-bearing quartz veins on the Yushishan area, north Altyn Tagh[J]. Geotectonica Et Metallogenia, 2021. doi: 10.16539/j.ddgzyckx.2020.05.014:1-33.

    CrossRef Google Scholar

    [11] 程奋维. 白尖山脉石英矿床成因浅析[J]. 甘肃冶金, 2020, 42(3): 106-108. doi: 10.3969/j.issn.1672-4461.2020.03.031

    CrossRef Google Scholar

    Cheng F W. Genesis of quartz deposit in Baijian Mountain[J]. Gansu Metallurgy, 2020, 42(3): 106-108. doi: 10.3969/j.issn.1672-4461.2020.03.031

    CrossRef Google Scholar

    [12] 颜玲亚, 高树学, 陈正国, 等. 我国脉石英矿床类型及成矿规律[J]. 中国非金属矿工业导刊, 2020(5): 10-14. doi: 10.3969/j.issn.1007-9386.2020.05.004

    CrossRef Google Scholar

    Yan Y L, Gao S X, Chen Z G, et al. Types and metallogenic regularity of vein quartz deposits in China[J]. China Non-Metallic Mining Industry Herald, 2020(5): 10-14. doi: 10.3969/j.issn.1007-9386.2020.05.004

    CrossRef Google Scholar

    [13] Moxon T W, Palyanova G. Agate genesis: A continuing enigma[J]. Minerals, 2020, 10(11): 953. doi: 10.3390/min10110953

    CrossRef Google Scholar

    [14] Moxon T, Reed S. Agate and chalcedony from igneous and sedimentary hosts aged from 13 to 3480Ma: A cathodoluminescence study[J]. Mineralogical Magazine, 2006, 70(5): 485-498. doi: 10.1180/0026461067050347

    CrossRef Google Scholar

    [15] 李伟良, 王谦. 临武县通天玉相关特征及成因初探[J]. 国土资源导刊, 2015, 12(4): 46-49. doi: 10.3969/j.issn.1672-5603.2015.04.010

    CrossRef Google Scholar

    Li W L, Wang Q. Preliminary exploration of the characteristics and the genesis of Tongtian Jade in Linwu County[J]. Land & Resources Herald, 2015, 12(4): 46-49. doi: 10.3969/j.issn.1672-5603.2015.04.010

    CrossRef Google Scholar

    [16] 袁顺达, 彭建堂, 李向前, 等. 湖南香花岭锡多金属矿床C、O、Sr同位素地球化学[J]. 地质学报, 2008, 82(11): 2-10.

    Google Scholar

    Yuan S D, Peng J T, Li X Q, et al. Carbon, oxygen and strontium isotope geochemistry of calcites from the Xianghualing tin-polymetallic deposit, Hunan Province[J]. Acta Geologica Sinica, 2008, 82(11): 2-10.

    Google Scholar

    [17] 徐质彬, 张利军, 杨晓弘, 等. 湖南临武通天山石英岩质玉矿床地质特征与成矿规律[J]. 资源信息与工程, 2018, 33(5): 47-51. doi: 10.3969/j.issn.2095-5391.2018.05.021

    CrossRef Google Scholar

    Xu Z B, Zhang L J, Yang X H, et al. Geological characteristics and metallogenic regularity of ore deposits of the black quartzite jade in Tongtian Mountain Linwu District, Hunan Province[J]. Resource Information and Engineering, 2018, 33(5): 47-51. doi: 10.3969/j.issn.2095-5391.2018.05.021

    CrossRef Google Scholar

    [18] 罗彬, 喻云峰, 廖佳, 等. 珠宝玉石无损检测光谱库及解析[M]. 武汉: 中国地质大学出版社, 2019: 216-217.

    Google Scholar

    Luo B, Yu Y F, Liao J, et al. Nondestructive testing spectrum library of jewelry and jade and its solution[M]. Wuhan: China University of Geosciences Press, 2019: 216-217.

    Google Scholar

    [19] 常丽华, 陈曼云, 金巍, 等. 透明矿物薄片鉴定手册[M]. 北京: 地质出版社, 2006: 20-151.

    Google Scholar

    Chang L H, Chen M Y, Jin W, et al. A manual for thin section identification of transparent minerals[M]. Beijing: Geological Publishing House, 2006: 20-151.

    Google Scholar

    [20] 陈曼云, 金巍, 郑常青. 变质岩鉴定手册[M]. 北京: 地质出版社, 2009: 41-73.

    Google Scholar

    Chen M Y, Jin W, Zheng C Q. Handbook of metamorphic rock identification[M]. Beijing: Geological Publishing House, 2009: 41-73.

    Google Scholar

    [21] 胡玲, 刘俊来, 纪沫. 变形显微构造识别手册[M]. 北京: 地质出版社, 2015: 23-31.

    Google Scholar

    Hu L, Liu J L, Ji M. Handbook of deformation microstructure identification[M]. Beijing: Geological Publishing House, 2015: 23-31.

    Google Scholar

    [22] 柳生祥, 曾俊杰, 张学奎, 等. 祁连造山带东段皋兰岩群叠加变质作用及其形成环境[J]. 甘肃地质, 2020, 29(增刊2): 22-28.

    Google Scholar

    Liu S X, Zeng J J, Zhang X K, et al. Superimposed metamorphism of the Gaolan Group in the eastern segment of Qilian Orogenic Belt[J]. Gansu Geology, 2020, 29(Supplement 2): 22-28.

    Google Scholar

    [23] Shaw D M. The origin of the Apsley gneiss, Ontario[J]. Canadian Journal of Earth Science, 1972: 18-35.

    Google Scholar

    [24] 陶瑞. 滇西凤庆泥盆系"温泉组"岩石特征及变质变形分析[D]. 成都: 成都理工大学, 2019.

    Google Scholar

    Tao R. The analysis of characteristics, metamorphism and deformation of rock in Devonian Wenquan Formation, Fengqing, western Yunnan[D]. Chengdu: Chengdu University of Technology, 2019.

    Google Scholar

    [25] Girty G H, Ridge D L. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66(1): 107-118.

    Google Scholar

    [26] 孙乾龙, 夏冬, 弓小平. 新疆北山清白山花岗岩体成因及构造环境分析[J]. 新疆地质, 2020, 38(3): 298-304. doi: 10.3969/j.issn.1000-8845.2020.03.004

    CrossRef Google Scholar

    Sun Q L, Xia D, Gong X P. Genesis and tectonic environment of Qingbaishan granite in Beishan, Xinjiang[J]. Xinjiang Geology, 2020, 38(3): 298-304. doi: 10.3969/j.issn.1000-8845.2020.03.004

    CrossRef Google Scholar

    [27] 周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305.

    Google Scholar

    Zhou W, Zeng M, Wang J, et al. Determination of major elements and rare earth elements in rare earth ores by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305.

    Google Scholar

    [28] Jewell P W, Stallard R F. Geochemistry and paleoceano graphic setting of central Nevada bedded barites[J]. The Journal of Geology, 1991, 99(2): 151-170. doi: 10.1086/629482

    CrossRef Google Scholar

    [29] 谈昕, 邱振, 卢斌, 等. 华南地区不同时代硅质岩地球化学特征及地质意义[J]. 科学技术与工程, 2018, 18(2): 7-19. doi: 10.3969/j.issn.1671-1815.2018.02.002

    CrossRef Google Scholar

    Tan X, Qiu Z, Lu B, et al. Geochemical characteristics for siliceous rocks of different ages in South China and their geological significance[J]. Science Technology and Engineering, 2018, 18(2): 7-19. doi: 10.3969/j.issn.1671-1815.2018.02.002

    CrossRef Google Scholar

    [30] 王西荣. 安徽省霍邱铁矿含铁岩系中斜长片麻岩黑云母-石榴石地球化学特征及其地质指示意义[J]. 矿物岩石, 2018(2): 1-10.

    Google Scholar

    Wang X R. Biotite garnet geochemistry of plagioclase gneiss in the iron bearing rock series of Huoqiu iron deposit, Anhui Province and its geological significance[J]. Mineral Rock, 2018(2): 1-10.

    Google Scholar

    [31] 黄长煌. 福建东山亲营山岩组变质岩石榴石-黑云母地质温度计的应用[J]. 华东地质, 2019, 40(1): 1-10. doi: 10.3969/j.issn.1674-3504.2019.01.001

    CrossRef Google Scholar

    Huang C H. Application of garnet biotite geothermometer in metamorphic rocks of Qinyingshan Formation, Dongshan, Fujian Province[J]. Geology of East China, 2019, 40(1): 1-10. doi: 10.3969/j.issn.1674-3504.2019.01.001

    CrossRef Google Scholar

    [32] 张茜, 余谦, 王剑, 等. 应用ICP-MS研究川西南龙马溪组泥页岩稀土元素特征及沉积环境[J]. 岩矿测试, 2018, 37(2): 217-224.

    Google Scholar

    Zhang Q, Yu Q, Wang J, et al. Study on REE characteristics and sedimentary environment of Longmaxi Formation shale in southwest Sichuan by ICP-MS[J]. Rock and Mineral Analysis, 2018, 37(2): 217-224.

    Google Scholar

    [33] 赵振明, 计文化, 李文明. 北山南部敦煌岩群铁矿化磁铁石英岩的变质成因[J]. 地质与勘探, 2018, 54(4): 689-701. doi: 10.3969/j.issn.0495-5331.2018.04.003

    CrossRef Google Scholar

    Zhao Z M, Ji W H, Li W M. Metamorphic genesis of magnetite quartzite with iron mineralization in the Dunhuang Group of southern Beishan Region[J]. Geology and Exploration, 2018, 54(4): 689-701. doi: 10.3969/j.issn.0495-5331.2018.04.003

    CrossRef Google Scholar

    [34] 柳生祥, 曾俊杰, 张学奎, 等. 祁连造山带东段皋兰岩群叠加变质作用及其形成环境[J]. 甘肃地质, 2020, 29(3): 22-28.

    Google Scholar

    Liu S X, Zeng J J, Zhang X K, et al. Superimposed metamorphism of the Gaolan Group in the eastern segment of Qilian orogenic belt[J]. Gansu Geology, 2020, 29(3): 22-28.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(2691) PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint