Citation: | ZHAO Huitao, YU Jian, PU Boling, ZHANG Haitao, GUI Xiaojun, LI Lianxia, WANG Ke, ZHANG Yanrong. 2025. Analysis of favorable sedimentary facies belt of shale gas in Uralik Formation in western Ordos Basin. Geological Bulletin of China, 44(5): 766-777. doi: 10.12097/gbc.2023.11.045 |
Promising gas shows have been observed in shale gas wells drilled in the organic−rich Uralik shale along the western margin of the Ordos Basin, marking a breakthrough in shale gas exploration and revealing significant exploration potential. To enhance the geological understanding of the sedimentary characteristics of organic−rich shale and clarify the distribution and development patterns of these shales, we conducted sedimentary facies division and analyzed favorable facies zones for the Uralik shale.
Based on core observation, drilling, logging, and experimental tests, a comprehensive study of the sedimentary characteristics of the Uralik shale was conducted, leading to a refined division of sedimentary facies. We also optimized favorable sedimentary facies zones in conjunction with shale gas enrichment characteristics.
The study concluded that the Uralik shale is widely and relatively stably distributed in the study area, exhibiting characteristics of 'thicker deposits in the northern region and thinner in the southern region', and 'thicker in the western region and thinner in the eastern region.' There is a significant difference in burial depth between the north and south, with strong structural disturbance in the east and west. The Uralik shale was deposited in a semi−deep water environment, predominantly consisting of graptolite−rich black shale. The sedimentary facies are arranged in a north−south belt, with water depth gradually increasing from east to west. This progression developed platform margin slope facies, broad−shelf sea facies, and basin facies. The western part of the basin is dominated by broad−shelf sea facies, which can be subdivided into three microfacies based on mineral composition: siliceous mud shed, calcareous mud shed, and mixed mud shed. Among these, the siliceous mud shed shale, which has a high silicon content (>50%), high organic matter abundance (TOC >1%), and good reservoir physical properties, is identified as the most favorable sedimentary microfacies.
Therefore, based on the research, it is concluded that the high−quality Uralik shale is a siliceous shale deposited at the base of the Uralik Formation.
[1] | Bustin R M. 2005. Gas shale tapped for big pay[J]. AAPG Explorer, 26(2): 5−7. |
[2] | Cardott B J. 2006. Gas shale tricky to understand[J]. AAPG Explorer, 26(11): 48. |
[3] | Feng Y Q. 2020. Reservoir characteristics and accumulation model of mud shale of Wulalik Formation in northwestern margin of Ordos Basin[D]. Master's Thesis of Chengdu University of Technology: 11−29 (in Chinese with English abstract). |
[4] | Fu S T, Fu J H, Xi S L, et al. 2021. Geological characteristics of Ordovician marine shale gas in the Ordos Basin and its prospects[J]. China Petroleum Exploration, 26(2): 33−44 (in Chinese with English abstract). |
[5] | Fu S T, Wang W X, Li X W, et al. 2021. Volume fracturing and drainage technologies for low−pressure marine shale gas reservoirs in the Ordos Basin[J]. Natural Gas Industry, 41(3): 72−79 (in Chinese with English abstract). |
[6] | Guo Y R, Zhao Z Y, Fu J H, et al. 2012. Sequence lithofacies paleogeography of the Ordovician in Ordos Basin, China[J]. Acta Petrolei Sinica, 33(z2): 95−109 (in Chinese with English abstract). |
[7] | Huang J P, Huang Z L, Liu L H, et al. 2022. Pore size characterization and their mainly controlling factors in Wulalike Formation shale, Ordas Basin[J]. Journal of Central South University: Science and Technology, 53(9): 3418−3433 (in Chinese with English abstract). |
[8] | Li D H, Li J Z, Wang S J, et al. 2009. Analysis of controls on gas shale reservoirs[J]. Natural Gas Industry, 29(5): 22−26 (in Chinese with English abstract). |
[9] | Li J F, Zhao Q, Hao S L, et al. 2005. Physical modeling of the fracture−cave systems of carbonate reservoirs in Tahe oilfield[J]. Geophysical Prospecting for Petroleum, 44(5): 428−432,15 (in Chinese with English abstract). |
[10] | Li Y X, Wu Y W, Wang Q L, et al. 2023. Main controlling factors of continental shale gas enrichment: A case study of Shanxi Formation in Yan'an exploration area, Ordos Basin[J]. Geological Bulletin of China, 42(9): 1423−1431 (in Chinese with English abstract). |
[11] | Li Z H, Hu J M, 2010. Structural evolution and distribution of paleokarst reservoirs in the Ordos Basin[J]. Oil & Gas Geology, 31(5): 640−647(in Chinese with English abstract). |
[12] | Ma Z R, Bai H F, Liu B X, et al. 2013. Lithofacies palaeogeography of the Middle−Late Ordovician Kelimoli and Wulalike ages in western Ordos area[J]. Journal of Palaeogeography: Chinese Edition, 15(6): 751−764. (in Chinese with English abstract). |
[13] | Miao F B, Zhang G T, Zhang B M, et al. 2024. Main controlling factors of enrichment and accumulation pattern of Carboniferous Ceshui Formation shale gas in Lianyuan sag, Central Hunan[J]. Geological Bulletin of China, 43(10): 1689−1704. |
[14] | Nie H K, Tang X, Bian R K. 2009. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica, 30(4): 484−491 (in Chinese with English abstract). |
[15] | Pu B L, Dong D Z, Wang F Q, et al. 2020. The effect of sedimentary facies on Longmaxi shale gas in southern Sichuan Basin[J]. Geology in China, 47(1): 111−120 (in Chinese with English abstract). |
[16] | Pu B L, Dong D Z, Guan Q Z, et al. 2022. Analysis of main controlling factors for the enrichment and high productivity of the Longmaxi shale gas in Southern Sichuan Basin[J]. Geophysical Prospecting For Petroleum, 61(5): 918−928 (in Chinese with English abstract). |
[17] | Shao D B, Bao H P, Wei L B, et al. 2019. Tectonic palaeogeography evolution and sedimentary filling characteristics of the Ordovician in the Ordos area[J]. Journal of Palaeogeography: Chinese Edition, 21(4): 537−556 (in Chinese with English abstract). |
[18] | Sun H L, Gao J R, Fu, et al. 2023. Restoration of Ordovician paleoenvironment and analysis of sedimentary system in the western margin of Ordos Basin[J]. Journal of Northeast Petroleum University, 47(1): 44−56,69,7−8 (in Chinese with English abstract). |
[19] | Wang X D, Zhao Z F, Li X P, et al. 2012. Mixing water fracturing technology for tight oil reservoir in Ordos Basin[J]. Oil Drilling & Production Technology, 34(5): 80−83 (in Chinese with English abstract). |
[20] | Wu D X, Wu X N, Li C S, et al. 2021. Sedimentary model and hydrocarbon−generation potential of source rock of the Ordovician Ulalik Formation in western Ordos Basin[J]. Marine Origin Petroleum Geology, 26(2): 123−130 (in Chinese with English abstract). |
[21] | Wu S J, Zhang Y S, Xing E Y. 2016. Geochemistry of Ordovician detrital rocks and its constrains on provenance in Zhuozishan area, Northwest Ordos Basin[J]. Acta Geologica Sinica, 90(8): 1860−1873(in Chinese with English abstract). |
[22] | Wu C Y, Jia Y N, Han H P, et al. 2015. Evaluation of Ordovician source rocks in western margin of Ordos Basin[J]. Xinjiang Petroleum Geology, 36(2): 180−185 (in Chinese with English abstract). |
[23] | Xi S L, Mo W L, Liu X S, et al. 2021. Shale gas exploration potential of Ordovician Wulalike Formation in the western margin of Ordos Basin: Case study of Well Zhongping 1[J]. Natural Gas Geoscience, 32(8): 1235−1246(in Chinese with English abstract). |
[24] | Zhai G Y, Bao S J, Pang F, et al. 2017. Peservoir−forming pattern of “four−storey” hydrocarbon accumulation in Anchang syncline of northern Guizhou Province[J]. Geology in China, 44(1): 1−12 (in Chinese with English abstract). |
[25] | Zhang F Q, Li Y N, Luo J L, et al. 2022. Microscopic pore structure characteristics of shale of Ordovician Wulalike Formation in western Ordos Basin[J]. Lithologic Reservoirs, 34(5): 50−62 (in Chinese with English abstract). |
[26] | Zhang Y N, Li R X, Xi S L, et al. 2022. Sedimentary environments and organic matter enrichment mechanism of Ordovician Wulalike Formation shale, western Ordos Basin[J]. Journal of Central South University: Science and Technology, 53(9): 3401−3417 (in Chinese with English abstract). |
[27] | Zhang Y Q, Guo Y R, Hou W, et al. 2013. Geochemical characteristics and exploration potential of the Middle−Upper Ordovician source rocks on the western and southern margin of Ordos Basin[J]. Natural Gas Geoscience, 24(5): 894−904 (in Chinese with English abstract). |
[28] | Zhao J Z, Wang D X, Sun L Y, et al. 2015. Origin of the Ordovician gas and its accumulation patterns in Northwestern Ordos Basin[J]. Oil & Gas Geology, 36(5): 711−720 (in Chinese with English abstract). |
[29] | 冯弋秦. 2020. 鄂尔多斯盆地西北缘乌拉力克组泥页岩储层特征及成藏模式研究[D]. 成都理工大学硕士学位论文: 11−29. |
[30] | 付锁堂, 付金华, 席胜利, 等. 2021a. 鄂尔多斯盆地奥陶系海相页岩气地质特征及勘探前景[J]. 中国石油勘探, 26(2): 33−44. doi: 10.3969/j.issn.1672-7703.2021.02.004 |
[31] | 付锁堂, 王文雄, 李宪文, 等. 2021b. 鄂尔多斯盆地低压海相页岩气储层体积压裂及排液技术[J]. 天然气工业, 41(3): 72−79. doi: 10.3787/j.issn.1000-0976.2021.03.008 |
[32] | 郭彦如, 赵振宇, 付金华, 等. 2012. 鄂尔多斯盆地奥陶纪层序岩相古地理[J]. 石油学报, 33(z2): 95−109. doi: 10.7623/syxb2012S2009 |
[33] | 黄军平, 黄正良, 刘立航, 等. 2022. 鄂尔多斯盆地乌拉力克组页岩储层孔径表征及其主控因素[J]. 中南大学学报(自然科学版), 53(9): 3418−3433. |
[34] | 李登华, 李建忠, 王社教, 等. 2009. 页岩气藏形成条件分析[J]. 天然气工业, 29(5): 22−26. doi: 10.3787/j.issn.1000-0976.2009.05.005 |
[35] | 李剑峰, 赵群, 郝守玲等. 2005. 塔河油田碳酸盐岩储层缝洞系统的物理模拟研究[J]. 石油物探, 44(5): 428−432,15. doi: 10.3969/j.issn.1000-1441.2005.05.003 |
[36] | 李艳霞, 吴雨威, 王巧玲, 等. 2023. 陆相页岩气富集主控因素——以鄂尔多斯盆地延安探区山西组为例[J]. 地质通报, 42(9): 1423−1431. doi: 10.12097/j.issn.1671-2552.2023.09.001 |
[37] | 李振宏, 胡健民. 2010. 鄂尔多斯盆地构造演化与古岩溶储层分布[J]. 石油与天然气地质, 31(5): 640−647. doi: 10.11743/ogg20100513 |
[38] | 马占荣, 白海峰, 刘宝宪, 等. 2013. 鄂尔多斯西部地区中—晚奥陶世克里摩里期—乌拉力克期岩相古地理[J]. 古地理学报, 15(6): 751−764. doi: 10.7605/gdlxb.2013.06.062 |
[39] | 苗凤彬, 张国涛, 张保民, 等. 2024. 湘中涟源凹陷石炭系测水组页岩气富集主控因素与成藏模式[J]. 地质通报, 43(10): 1689−1704. doi: 10.12097/gbc.2023.06.016 |
[40] | 聂海宽, 唐玄, 边瑞康. 2009. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报, 30(4): 484−491. doi: 10.3321/j.issn:0253-2697.2009.04.002 |
[41] | 蒲泊伶, 董大忠, 王凤琴, 等. 2020. 沉积相带对川南龙马溪组页岩气富集的影响[J]. 中国地质, 47(1): 111−120. doi: 10.12029/gc20200109 |
[42] | 蒲泊伶, 董大忠, 管全中, 等. 2022. 川南地区龙马溪组页岩气富集高产主控因素分析[J]. 石油物探, 61(5): 918−928. doi: 10.3969/j.issn.1000-1441.2022.05.016 |
[43] | 邵东波, 包洪平, 魏柳斌, 等. 2019. 鄂尔多斯地区奥陶纪构造古地理演化与沉积充填特征[J]. 古地理学报, 21(4): 537−556. doi: 10.7605/gdlxb.2019.04.035 |
[44] | 孙华丽, 高建荣, 付玲, 等. 2023. 鄂尔多斯盆地西缘奥陶系古环境恢复及沉积体系分析[J]. 东北石油大学学报, 47(1): 44−56,69,7−8. doi: 10.3969/j.issn.2095-4107.2023.01.004 |
[45] | 王晓东, 赵振峰, 李向平, 等. 2012. 鄂尔多斯盆地致密油层混合水压裂试验[J]. 石油钻采工艺, 34(5): 80−83. doi: 10.3969/j.issn.1000-7393.2012.05.021 |
[46] | 吴东旭, 吴兴宁, 李程善, 等. 2021. 鄂尔多斯盆地西部奥陶系乌拉力克组烃源岩沉积模式及生烃潜力[J]. 海相油气地质, 26(2): 123−130. doi: 10.3969/j.issn.1672-9854.2021.02.004 |
[47] | 吴素娟, 张永生, 邢恩袁. 2016. 桌子山地区奥陶系乌拉力克组碎屑岩地球化学特征及其对物源的制约[J]. 地质学报, 90(8): 1860−1873. |
[48] | 武春英, 贾亚妮, 韩会平, 等. 2015. 鄂尔多斯盆地西缘探区奥陶系烃源岩评价[J]. 新疆石油地质, 36(2): 180−185. |
[49] | 席胜利, 莫午零, 刘新社, 等. 2021. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩气勘探潜力: 以忠平1井为例[J]. 天然气地球科学, 32(8): 1235−1246. |
[50] | 翟刚毅, 包书景, 庞飞, 等. 2017. 贵州遵义地区安场向斜“四层楼”页岩油气成藏模式研究[J]. 中国地质, 44(1): 1−12. |
[51] | 张凤奇, 李宜浓, 罗菊兰, 等. 2022. 鄂尔多斯盆地西部奥陶系乌拉力克组页岩微观孔隙结构特征[J]. 岩性油气藏, 34(5): 50−62. doi: 10.12108/yxyqc.20220504 |
[52] | 张艳妮, 李荣西, 席胜利, 等. 2022. 鄂尔多斯盆地西缘奥陶系乌拉力克组页岩沉积环境及有机质富集机制[J]. 中南大学学报(自然科学版), 53(9): 3401−3417. |
[53] | 张月巧, 郭彦如, 侯伟, 等. 2013. 鄂尔多斯盆地西南缘中上奥陶统烃源岩特征及勘探潜力[J]. 天然气地球科学, 24(5): 894−904. |
[54] | 赵靖舟, 王大兴, 孙六一, 等. 2015. 鄂尔多斯盆地西北部奥陶系气源及其成藏规律[J]. 石油与天然气地质, 36(5): 711−720. |
Location map of study area (a) and comprehensive stratigraphic column (b)
Core photos of the Uralik shale in western Ordos Basin
Lithofacies paleogeographic map of the Uralik Formation in the Western Ordos Basin
Sedimentary facies stratigraphic profile of the Well Zhong 5−Zhongping 1−Er 96−Qi’tan 9
Composite stratigraphic column of the sedimentary facies of the Uralik Formation in Well Zhongping 1
Sedimentary model of the platform margin of the Uralik Formation in the Western Ordos Basin
Geochemical profile of the Uralik Formation in Well Li 48
Triangle diagram of mineral composition of the Uralik shale
Intersection diagram of TOC and silica content ( a ) and relationship diagram of rhyolite and matrix pores ( b )