Citation: | LIU Daixin, CHEN Yuanlin, DING Mingyuan, LI Yuqiong. Effect of Carbon Chain Structure on the Quantum Chemical Properties of Xanthate Collector Molecules[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 84-92. doi: 10.13779/j.cnki.issn1001-0076.2025.08.001 |
Xanthates are commonly used as flotation collectors for sulfide ores, and the length and structure of the carbon chain will affect their capture performance. Based on density functional theory (DFT), the bond structure characteristics and frontier orbital energies of polar functional groups −OCSS− of normal and isomeric xanthate ions with C1 to C5 carbon chain lengths were calculated, the orbital coefficient, Mulliken charge, electrophilicity and nucleophilicity of the S atoms were also calculated. The results show that the length of the carbon chain has no significant effect on the structural characteristics of the functional group bonds of the collector, the H atoms on the carbon chain have weak hydrogen bonding with the polar group S atoms, which increase with the growth of the carbon chain, resulting in subtle differences in the functional group bond structure. The two S atoms in the polar functional groups of xanthate ions have similar charges and are both nucleophilic, but the nucleophilicity of the S atoms varies, resulting in different adsorption abilities on mineral surfaces. Except for butyl and isobutyl xanthate ions, the energy difference between the highest occupied molecular orbital (HOMO) of isomeric xanthate ions and the lowest unoccupied orbital (LUMO) of pyrite is lower than that of the normal xanthate ions. This indicates that isomers are beneficial for enhancing the collection ability of collectors, which is consistent with the calculated binding energy of xanthate ions and Fe2+. Among them, isopropyl and isobutyl xanthate ions have higher binding energies with Fe2+.
[1] | 汤亦婧, 罗思岗, 陆红羽. 辽宁某金矿选矿试验研究[J]. 有色金属(选矿部分), 2022(4): 105−110. TANG Y J, LUO S G, LU H Y. Experimental research on mineral processing for a gold ore in Liaoning province[J]. Nonferrous Metals (Mineral Processing Section), 2022(4): 105−110. |
[2] | ZHONG C H, FENG B, CHEN Y G, et al. Flotation separation of molybdenite and talc using tragacanth gum as depressant and potassium butyl xanthate as collector[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(12): 3879−3890. |
[3] | 朱永谊. 黄铜矿浮选工艺及捕收剂研究进展[J]. 世界有色金属, 2020(18): 59−60. ZHU Y Y. Research progress of chalcopyrite flotation technology and collectors[J]. World Nonferrous Metals, 2020(18): 59−60. |
[4] | 姜毛, 张覃, 李龙江. 黄药类捕收剂与载金黄铁矿的作用机理研究[J]. 矿冶工程, 2015, 35(3): 44−47. JIANG M, ZHANG Q, LI L J. Interaction mechanism between xanthate collectors and gold−bearing pyrite[J]. Mining and Metallurgical Engineering, 2015, 35(3): 44−47. |
[5] | R 普雷西斯, 崔洪山, 李长根. 黄铁矿浮选中硫代碳酸盐捕收剂的基础理论和应用[J]. 国外金属矿选矿, 2004(8): 14−18. R. PRESIS, CUI H S, LI C G. Basic theory and application of thiocarbonate collectors in pyrite flotation[J]. Metallic Ore Dressing Abroad, 2004(8): 14−18. |
[6] | 冯真真, 陶强, 车礼东. 黄原酸盐的应急处理[J]. 安全, 2011, 32(3): 51−54. FENG Z Z, TAO Q, CHE L D. Emergency treatment of xanthate[J]. Safety & Security, 2011, 32(3): 51−54. |
[7] | 韩德红. 异丙基黄原酸钠的生产工艺[J]. 河北化工, 2011, 34(2): 44−45. HAN D H. Production process of sodium isopropyl xanthate[J]. Coal and Chemical Industry, 2011, 34(2): 44−45. |
[8] | 张华谦. 异丙基黄药性能简介[J]. 有色金属(选矿部分), 1983(4): 56−57. ZHANG H Q. Introduction to the properties of isopropyl xanthate[J]. Nonferrous Metals (Mineral Processing Section), 1983(4): 56−57. |
[9] | 朱一民. 2023年浮选药剂研究进展[J]. 有色金属(选矿部分), 2024(3): 1−22. ZHU Y M. Progress of flotatioin reagents in 2023[J]. Nonferrous Metals (Mineral Processing Section), 2024(3): 1−22. |
[10] | 李双棵, 顾帼华, 邱冠周, 等. N−丙基−N′−乙氧羰基硫脲对黄铜矿和黄铁矿的浮选及其电化学行为(英文)[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(6): 1241−1247. doi: 10.1016/S1003-6326(18)64762-4 LI S K, GU G H, QIU G Z, et al. Flotation and electrochemical behaviors of chalcopyrite and pyrite in the presence of N−propyl−N′−ethoxycarbonyl thiourea[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(6): 1241−1247. doi: 10.1016/S1003-6326(18)64762-4 |
[11] | 肖文革, 范志鸿, 李红艳, 等. 异戊基黄原酸钾合成品及粒状干制品配方的生产工艺研究[J]. 有色矿冶, 2018, 34(3): 28−30. XIAO W G, FAN Z H, LI H Y, et al. Study of the formula for production technology of potassium isoamyl xanthate synthesis and drying pellet product[J]. Non−Ferrous Mining and Metallurgy, 2018, 34(3): 28−30. |
[12] | CASES J. M., 郑昕. 细磨方铅矿和戊基钾黄药的反应与浮选的关系: pH、磨矿及捕收剂浓度的影响[J]. 国外金属矿选矿, 1992(9): 15−20. CASES J. M., ZHENG X. The relationship between the reaction and flotation of finely ground galena and amyl potassium xanthate: The effects of pH, grinding and collector concentration[J]. Metallic Ore Dressing Abroad, 1992(9): 15−20. |
[13] | 阎赞, 王想, 王闻单, 等. 商洛某金矿石浮选正交试验研究[J]. 当代化工, 2022, 51(10): 2274−2277. YAN Z, WANG X, WANG W D, et al. Orthogonal experimental study on flotation of a certain gold ore in Shangluo[J]. Contemporary Chemical Industry, 2022, 51(10): 2274−2277. |
[14] | YEKELER M, YEKELER H. A density functional study on the efficiencies of 2−mercaptobenzoxazole and its derivatives as chelating agents in flotation processes[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2006, 286(1/2/3): 121−125. |
[15] | 曹飞, 孙传尧, 王化军, 等. 烃基结构对黄药捕收剂浮选性能的影响[J]. 北京科技大学学报, 2014, 36(12): 1589−1594. CAO F, SUN C Y, WANG H J, et al. Effect of alkyl structure on the flotation performance of xanthate collectors[J]. Chinese Journal of Engineering, 2014, 36(12): 1589−1594. |
[16] | 刘凤霞. 氧化铅浮选黄药分子结构与性能研究[D]. 南宁: 广西大学, 2007. LIU F X. Study on the molecular structure and properties of xanthate from lead oxide flotation[D]. Nanning: Guangxi University, 2007. |
[17] | 卢绿荣, 陈建华, 李玉琼. 硫化矿浮选捕收剂分子结构与性能的电子态密度研究[J]. 中国有色金属学报, 2018, 28(7): 1482−1490. LU L R, CHEN J H, LI Y Q. Electronic states density study of molecular structures and activity of sulfide floatation collectors[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(7): 1482−1490. |
[18] | CHERMETTE H. Chemical reactivity indexes in density functional theory[J]. Journal of Computational Chemistry, 1999, 20(1). DOI:10.1002/(SICI)1096-987X(19990115)20:13.0.CO;2-A. |
[19] | HUNG A, YAROVSKY I, P. RUSSO S. Density−functional theory studies of xanthate adsorption on the pyrite FeS2 (110) and (111) surfaces[J]. The Journal of Chemical Physics, 2003, 118(13): 6022−6029. doi: 10.1063/1.1556076 |
[20] | GREENWOOD H H. Molecular orbital theory of reactivity in aromatic hydrocarbons[J]. The Journal of Chemical Physics, 2004, 20(10): 1653. |
[21] | FUKUI K. Theory of orientation and stereoselection[M]. Springer: berlin, Heidelberg, 1975. |
[22] | PARR R G, YANG W. Density functional approach to the frontier−electron theory of chemical reactivity[J]. Journal of The American Chemical Society, 2002, 106(14): 4049−4050. |
[23] | R. S. Mulliken. A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities[J]. The Journal of Chemical Physics, 1934, 2(11): 782−793. doi: 10.1063/1.1749394 |
[24] | R. K. Roy. Stockholders Charge Partitioning Technique. A Reliable Electron Population Analysis Scheme to Predict Intramolecular Reactivity Sequence[J]. The Journal of Physical Chemistry A, 2003, 107(48): 10428−10434. doi: 10.1021/jp035848z |
[25] | CHRISTOPHE MORELL, PAUL W, AYERS, ANDRE GRAND, et al. Rationalization of diels−alder reactions through the use of the dual reactivity descriptor Δf(r)[J]. Phys. Chem. Chem. Phys., 2008, 10: 7239−7246. doi: 10.1039/b810343g |
[26] | CHRISTOPHE MORELL, ANDRE GRAND, ALEJANDRO TORO−LABBE. Theoretical support for using the Δf(r) descriptor[J]. Chem. Phys. Lett., 2006, 425: 342−346. doi: 10.1016/j.cplett.2006.05.003 |
[27] | CHRISTOPHE MORELL, ANDRE GRAND, ALEJANDRO TORO−LABBE. New dual descriptor for chemical reactivity[J]. The Journal of Physical Chemistry A, 2005, 109(1): 205−212. |
Ionic structure of ethyl xanthate
Frontier orbital configuration of collectors
Model of the interaction between agent ions and iron ions