Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 2
Article Contents

SUN Lingli, CHEN Haining, WANG Qixuan, WANG Weihan. Research Progress on Dolomite Improving Acidified Farmland Soil[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(2): 121-130. doi: 10.3969/j.issn.1000-6532.2025.02.017
Citation: SUN Lingli, CHEN Haining, WANG Qixuan, WANG Weihan. Research Progress on Dolomite Improving Acidified Farmland Soil[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(2): 121-130. doi: 10.3969/j.issn.1000-6532.2025.02.017

Research Progress on Dolomite Improving Acidified Farmland Soil

  • This article pertains to the field of agricultural science, with the focus on the application and effectiveness of dolomite in ameliorating acidified farmland soils. Addressing the increasingly prominent issue of soil acidification in Chinese farmlands, this study systematically elucidates the significant role played by dolomite, an alkaline carbonate mineral material, in soil improvement. Through a comprehensive analysis of dolomite's mechanisms for enhancement, the research findings demonstrate its ability to significantly increase soil pH value through acid-base neutralization and precipitation processes, effectively reduce toxic heavy metal ion activity, and enhance soil nutrient availability. Moreover, dolomite exerts a notable positive influence on the structure of soil microbial communities, thereby further promoting the health and balance of the soil ecosystem. Importantly, applying dolomite also leads to a substantial reduction in greenhouse gas emission intensity from acidified soils, offering a novel approach for regulating carbon and nitrogen cycles within farmland ecosystems. Economic benefit analysis indicates that as a cost-effective and environmentally friendly soil amendment option, dolomite holds tremendous potential for practical applications and market prospects. Future research can explore synergistic effects between dolomite and other soil amendments as well as develop application strategies tailored to different types of soils and cropping systems with an aim to provide more precise and efficient solutions for improving agricultural production.

  • 加载中
  • [1] WEIL R R, BRADY N C. The Nature and Properties of Soils. 15th edition [M]. The Nature and Properties of Soils. 15th edition, 2017.

    Google Scholar

    [2] WU Z, SUN X, SUN Y, et al. Soil acidification and factors controlling topsoil pH shift of cropland in central China from 2008 to 2018[J]. Geoderma, 2022, 408:115586. doi: 10.1016/j.geoderma.2021.115586

    CrossRef Google Scholar

    [3] 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244.XU R K. Research progresses in soil acidification and its control[J]. Soil, 2015, 47(4): 238-244.

    Google Scholar

    XU R K. Research progresses in soil acidification and its control[J]. Soil, 2015, 47(4): 238-244.

    Google Scholar

    [4] ZHANG Y, YE C, SU Y, et al. Soil acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials[J]. Agriculture, Ecosystems & Environment, 2022, 340(1): 108176.

    Google Scholar

    [5] 赵学强, 潘贤章, 马海艺, 等. 中国酸性土壤利用的科学问题与策略[J]. 土壤学报, 2023, 60(5):1248-1263.ZHAO X Q, PAN X Z, MA H Y, et al. Scientific issues and strategies of acid soil use in China[J]. Acta Pedologica Sinica, 2023, 60(5):1248-1263. doi: 10.11766/trxb202307250290

    CrossRef Google Scholar

    ZHAO X Q, PAN X Z, MA H Y, et al. Scientific issues and strategies of acid soil use in China[J]. Acta Pedologica Sinica, 2023, 60(5):1248-1263. doi: 10.11766/trxb202307250290

    CrossRef Google Scholar

    [6] 杨帆, 贾伟, 杨宁, 等. 近30年我国不同地区农田耕层土壤的pH变化特征[J]. 植物营养与肥料学报, 2023, 29(7):1213-1227.YANG F, JIA W, YANG N, et al. Spatio-temporal variation of surface soil pH of farmland in different regions of China in the past 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(7):1213-1227. doi: 10.11674/zwyf.2022593

    CrossRef Google Scholar

    YANG F, JIA W, YANG N, et al. Spatio-temporal variation of surface soil pH of farmland in different regions of China in the past 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(7):1213-1227. doi: 10.11674/zwyf.2022593

    CrossRef Google Scholar

    [7] GOULDING K W T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom[J]. Soil Use and Management, 2016, 32(3):390-399. doi: 10.1111/sum.12270

    CrossRef Google Scholar

    [8] 吴道铭, 傅友强, 于智卫, 等. 我国南方红壤酸化和铝毒现状及防治[J]. 土壤, 2013, 45(4):577-584.WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in south China and prevention[J]. Soil, 2013, 45(4):577-584.

    Google Scholar

    WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in south China and prevention[J]. Soil, 2013, 45(4):577-584.

    Google Scholar

    [9] 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33(2):160-167.XU R K, LI J Y, ZHOU S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2):160-167.

    Google Scholar

    XU R K, LI J Y, ZHOU S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2):160-167.

    Google Scholar

    [10] LIU J X, CUI J, LIU H B, et al. Research progress of soil amelioration of acidified soil by soil amendments[J]. Journal of Environmental Engineering Technology, 2022, 12(1):173.

    Google Scholar

    [11] BABLA M, KATWAL U, YONG M T, et al. Value-added products as soil conditioners for sustainable agriculture[J]. Resources, Conservation and Recycling, 2022, 178:106079.

    Google Scholar

    [12] 黄武, 牟海燕, 梁煊, 等. 土壤酸化的防护与治理研究进展[J]. 四川化工, 2019, 22(5):9-13.HUANG W, MOU H Y, LIANG X, et al. Advances in soil acidification prevention and treatment[J]. Sichuan Chemical Industry, 2019, 22(5):9-13.

    Google Scholar

    HUANG W, MOU H Y, LIANG X, et al. Advances in soil acidification prevention and treatment[J]. Sichuan Chemical Industry, 2019, 22(5):9-13.

    Google Scholar

    [13] 张巍. 白云石的应用进展[J]. 矿产保护与利用, 2018(2):130-144.ZHANG W. Application progress of dolomite[J]. Conservation and Utilization of Mineral, 2018(2):130-144.

    Google Scholar

    ZHANG W. Application progress of dolomite[J]. Conservation and Utilization of Mineral, 2018(2):130-144.

    Google Scholar

    [14] 程良管, 卢寿慈, 张垂昌. 白云石资源综合利用的途径[J]. 矿产保护与利用, 1990(4):33-37+32.CHENG L G, LU S C, ZHANG C C. Ways to comprehensively utilize the resources of Baiyunshan[J]. Conservation and Utilization of Mineral Resources, 1990(4):33-37+32.

    Google Scholar

    CHENG L G, LU S C, ZHANG C C. Ways to comprehensively utilize the resources of Baiyunshan[J]. Conservation and Utilization of Mineral Resources, 1990(4):33-37+32.

    Google Scholar

    [15] SCHOLLE P A, ULMER-SCHOLLE D S. A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis [M]. American Association of Petroleum Geologists, 2003.

    Google Scholar

    [16] 刘丽红, 韩淼, 田亚, 等. 白云岩矿特征、成因类型、分布及其开发利用价值[J/OL]. 中国地质, 1-25[2024-03-13]. https://kns.cnki.net/kcms2/detail/11.1167.P.20230704.0937.004.htmlLIU L H, HAN M, TIAN Y, et al. The characteristics, types, distributions and utilization value of dolomite deposit[J/OL]. Geology in China, 1-25[2024-03-13]. https://kns.cnki.net/kcms2/detail/11.1167.P.20230704.0937.004.html

    Google Scholar

    LIU L H, HAN M, TIAN Y, et al. The characteristics, types, distributions and utilization value of dolomite deposit[J/OL]. Geology in China, 1-25[2024-03-13]. https://kns.cnki.net/kcms2/detail/11.1167.P.20230704.0937.004.html

    Google Scholar

    [17] 班小淇, 顾畔, 印万忠, 等. 菱镁矿浮选体系中Fe3+对白云石的选择性活化及机理分析[J]. 矿产综合利用, 2022(5):125-129.BAN X Q, GU P, YIN W Z, et al. Study on reverse flotation process of magnesite and dolomite in dodecylamine system[J]. Multipurpose Utilization of Mineral Resources, 2022(5):125-129.

    Google Scholar

    BAN X Q, GU P, YIN W Z, et al. Study on reverse flotation process of magnesite and dolomite in dodecylamine system[J]. Multipurpose Utilization of Mineral Resources, 2022(5):125-129.

    Google Scholar

    [18] 王少阳, 祁欣, 罗旭东, 等. 白云石的应用进展[J]. 耐火材料, 2022, 56(1):88-92.WANG S Y, QI X, LUO X D, et al. Application progress of dolomite[J]. Refractories, 2022, 56(1):88-92. doi: 10.3969/j.issn.1001-1935.2022.01.019

    CrossRef Google Scholar

    WANG S Y, QI X, LUO X D, et al. Application progress of dolomite[J]. Refractories, 2022, 56(1):88-92. doi: 10.3969/j.issn.1001-1935.2022.01.019

    CrossRef Google Scholar

    [19] 朱宏生, 刘玉凡, 王晨. 百香果园施用白云石粉应用效果试验[J]. 农业科技通讯, 2021(6): 59-61.ZHU H S, LIU Y F, WANG C. Experiment on the application effect of dolomite powder applied to passion fruit orchards [J]. Bulletin of Agricultural Science and Technology, 2021, (6): 59-61.

    Google Scholar

    ZHU H S, LIU Y F, WANG C. Experiment on the application effect of dolomite powder applied to passion fruit orchards [J]. Bulletin of Agricultural Science and Technology, 2021, (6): 59-61.

    Google Scholar

    [20] 钟雄发. 三华李酸性土壤果园施用白云石粉效果探究[J]. 乡村科技, 2022, 13(4):61-63.ZHONG X F. Exploration on the effect of dolomite powder application in the orchard of Sanhua plum with acidic soil[J]. Rural Technology, 2022, 13(4):61-63. doi: 10.3969/j.issn.1674-7909.2022.04.021

    CrossRef Google Scholar

    ZHONG X F. Exploration on the effect of dolomite powder application in the orchard of Sanhua plum with acidic soil[J]. Rural Technology, 2022, 13(4):61-63. doi: 10.3969/j.issn.1674-7909.2022.04.021

    CrossRef Google Scholar

    [21] TRAKAL L, NEUBERG M, TLUSTOŠP, et al. Environment dolomite limestone application as a chemical immobilization of metal-contaminated soil[J]. Plant, Soil and Environment, 2011, 57(4):173-179. doi: 10.17221/408/2010-PSE

    CrossRef Google Scholar

    [22] 文星. 几种土壤改良剂对酸性水稻土及红壤旱土的改良效果研究[D]. 长沙: 中南大学, 2015.WEN X. Study the effects of several soil amendments on acid paddy soil and red soil[D]. Changsha: Central South University, 2015.

    Google Scholar

    WEN X. Study the effects of several soil amendments on acid paddy soil and red soil[D]. Changsha: Central South University, 2015.

    Google Scholar

    [23] 武际, 郭熙盛, 王文军, 等. 施用白云石粉对黄红壤酸度和油菜产量的影响[J]. 中国油料作物学报, 2006(1):55-58.WU J, GUO X S, WANG W J, et al. Effect of dolomite application on soil acidity and yield of rapeseed on yellow-red soil[J]. Chinese Journal of Oil Crop Sciences, 2006(1):55-58. doi: 10.3321/j.issn:1007-9084.2006.01.012

    CrossRef Google Scholar

    WU J, GUO X S, WANG W J, et al. Effect of dolomite application on soil acidity and yield of rapeseed on yellow-red soil[J]. Chinese Journal of Oil Crop Sciences, 2006(1):55-58. doi: 10.3321/j.issn:1007-9084.2006.01.012

    CrossRef Google Scholar

    [24] MAGDOLNA T, KOVÁCS A, OLÁH Z, et al. Dolomite and calcite treatments applying in melioration of an acidic sandy soil[J]. Natural Resources and Sustainable Development, 2019, 9:174-181.

    Google Scholar

    [25] LUBIS K S, HANUM H, AULIA G. The effect of biofertilizer, chicken manure and dolomite on chemical soil and the growth of soybean at potential acid sulphate soils[J]. IOP Conference Series: Earth and Environmental Science, 2021, 782(4):042035.

    Google Scholar

    [26] S D, NS R, SWADIGA O. Acidity and nutrient management practices for enhancing soil nutrient availability, nutrient uptake and grain yield of rice in Vaikom kari soils in Kuttanad, Kerala[J]. ORYZA- An International Journal on Rice, 2023, 60:426-441. doi: 10.35709/ory.2023.60.3.6

    CrossRef Google Scholar

    [27] 谭智勇, 王喜英, 赵辉, 等. 改良剂对酸性植烟土壤化学性质、细菌群落结构和丰度的影响[J]. 江苏农业科学, 2023, 51(16):240-246.TAN Z Y, WANG X Y, ZHAO H, et al. lmpacts of amendments on chemical properties and bacterial communitystructure and abundance in acid tobacco-planting soils[J]. Jiangsu Agricultural Sciences, 2023, 51(16):240-246.

    Google Scholar

    TAN Z Y, WANG X Y, ZHAO H, et al. lmpacts of amendments on chemical properties and bacterial communitystructure and abundance in acid tobacco-planting soils[J]. Jiangsu Agricultural Sciences, 2023, 51(16):240-246.

    Google Scholar

    [28] 赵辉, 王喜英, 谭智勇, 等. 改良剂对酸性植烟土壤固氮菌群落结构和丰度的影响[J]. 南方农业学报, 2022, 53(9):2435-2443.ZHAO H, WANG X Y, TAN Z Y, et al. Effects of amendment application on structure and abundance of nitrogen fixing microbial community in acidic tobacco-planting soil[J]. Journal of Southern Agriculture, 2022, 53(9):2435-2443. doi: 10.3969/j.issn.2095-1191.2022.09.006

    CrossRef Google Scholar

    ZHAO H, WANG X Y, TAN Z Y, et al. Effects of amendment application on structure and abundance of nitrogen fixing microbial community in acidic tobacco-planting soil[J]. Journal of Southern Agriculture, 2022, 53(9):2435-2443. doi: 10.3969/j.issn.2095-1191.2022.09.006

    CrossRef Google Scholar

    [29] JING Y D, HE Z L, YANG X E. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils[J]. Journal of Zhejiang University SCIENCE B, 2007, 8(3):192-207.

    Google Scholar

    [30] HARTMANN M, SIX J. Soil structure and microbiome functions in agroecosystems[J]. Nature Reviews Earth & Environment, 2023, 4(1):4-18.

    Google Scholar

    [31] 李丹, 王道泽, 赵玲玲, 等. 不同土壤改良剂对设施蔬菜土壤酸化的改良效果研究[J]. 中国农学通报, 2017, 33(27):112-116.LI D, WANG D Z, ZHAO L L, et al. lmprovement effects of different soil conditioners on acidity of greenhouse vegetable[J]. Chinese Agricultural Science Bulletin, 2017, 33(27):112-116. doi: 10.11924/j.issn.1000-6850.casb16080008

    CrossRef Google Scholar

    LI D, WANG D Z, ZHAO L L, et al. lmprovement effects of different soil conditioners on acidity of greenhouse vegetable[J]. Chinese Agricultural Science Bulletin, 2017, 33(27):112-116. doi: 10.11924/j.issn.1000-6850.casb16080008

    CrossRef Google Scholar

    [32] 孔丽丽, 侯云鹏, 都钧, 等. 不同酸土改良剂对玉米产量、干物质积累和土壤pH值的影响[J]. 东北农业科学, 2023, 48(5):1-5.KONG L L, HOU Y P, DU J, et al. Effects of different amendments of acidic soil on maize yield, dry matter accumulation and soil pH[J]. Journal of Northeast Agricultural Sciences, 2023, 48(5):1-5.

    Google Scholar

    KONG L L, HOU Y P, DU J, et al. Effects of different amendments of acidic soil on maize yield, dry matter accumulation and soil pH[J]. Journal of Northeast Agricultural Sciences, 2023, 48(5):1-5.

    Google Scholar

    [33] 李昂, 王旭, 范洪黎. 4种土壤调理剂改良红壤铝毒害的效果研究[J]. 中国土壤与肥料, 2014(4):7-11.LI ANG, WANG X, FAN H L. Effects of four soil conditioners on alleviating aluminum toxicity in acid red soil[J]. Soil and Fertilizer Sciences in China, 2014(4):7-11. doi: 10.11838/sfsc.20140402

    CrossRef Google Scholar

    LI ANG, WANG X, FAN H L. Effects of four soil conditioners on alleviating aluminum toxicity in acid red soil[J]. Soil and Fertilizer Sciences in China, 2014(4):7-11. doi: 10.11838/sfsc.20140402

    CrossRef Google Scholar

    [34] 曹胜, 曾斌, 龚碧涯, 等. 碱性物料与有机物料配施对柑橘园土壤酸碱缓冲性能和果实品质的影响[J]. 中国果树, 2023(1):57-63+71.CAO S, ZENG B, GONG B Y, et al. Effects of combined application of alkaline materials and organic materials onsoil acid-base buffering and fruit quality in citrus orchard[J]. China Fruits, 2023(1):57-63+71.

    Google Scholar

    CAO S, ZENG B, GONG B Y, et al. Effects of combined application of alkaline materials and organic materials onsoil acid-base buffering and fruit quality in citrus orchard[J]. China Fruits, 2023(1):57-63+71.

    Google Scholar

    [35] 余臻. 不同土壤改良剂对汞污染水稻-蔬菜轮作耕地安全利用效果的研究[J]. 农业与技术, 2022, 42(20):91-94.YU Z. Study on the effect of different soil conditioners on the safe utilization of mercury-contaminated rice-vegetable rotation cropland[J]. Agriculture and Technology, 2022, 42(20):91-94.

    Google Scholar

    YU Z. Study on the effect of different soil conditioners on the safe utilization of mercury-contaminated rice-vegetable rotation cropland[J]. Agriculture and Technology, 2022, 42(20):91-94.

    Google Scholar

    [36] 童文彬, 江建锋, 杨海峻, 等. 南方典型酸化土壤改良与水稻安全种植同步应用技术[J]. 浙江农业科学, 2022, 63(6):1154-1156+1160.TONG W B, JIANG J F, YANG H J, et al. Synchronization application of typical acidified soil improvement and saferice growth in South China[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(6):1154-1156+1160.

    Google Scholar

    TONG W B, JIANG J F, YANG H J, et al. Synchronization application of typical acidified soil improvement and saferice growth in South China[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(6):1154-1156+1160.

    Google Scholar

    [37] 杨文俪. 福建省安溪县茶园土壤酸化速率与改良技术[J]. 茶叶学报, 2021, 62(2):89-93.YANG W L. Remedy for soil acidification at tea plantations in Anxi, Fujian[J]. Acta Tea Sinica, 2021, 62(2):89-93. doi: 10.3969/j.issn.1007-4872.2021.02.009

    CrossRef Google Scholar

    YANG W L. Remedy for soil acidification at tea plantations in Anxi, Fujian[J]. Acta Tea Sinica, 2021, 62(2):89-93. doi: 10.3969/j.issn.1007-4872.2021.02.009

    CrossRef Google Scholar

    [38] 余跑兰, 孙永明, 李小飞, 等. 施用白云石粉对茶园土壤酸化及茶叶品质与产量的影响[J]. 茶叶通讯, 2020, 47(1):46-51.YU P L, SUN Y M, LI X F, et al. Effects of dolomite powder application on tea garden soil acidification, tea quality and yield[J]. Journal of Tea Communication, 2020, 47(1):46-51. doi: 10.3969/j.issn.1009-525X.2020.01.009

    CrossRef Google Scholar

    YU P L, SUN Y M, LI X F, et al. Effects of dolomite powder application on tea garden soil acidification, tea quality and yield[J]. Journal of Tea Communication, 2020, 47(1):46-51. doi: 10.3969/j.issn.1009-525X.2020.01.009

    CrossRef Google Scholar

    [39] 邱全敏, 王伟, 吴雪华, 等. 施用不同pH改良剂对荔枝园酸性土壤性质及荔枝生长的影响[J]. 热带作物学报, 2020, 41(2):217-224.QIU Q M, WANG W, WU X H, et al. Effects of soil pH conditioners on soil properties of acid litchi orchards and litchi growth[J]. Chinese Journal of Tropical Crops, 2020, 41(2):217-224. doi: 10.3969/j.issn.1000-2561.2020.02.002

    CrossRef Google Scholar

    QIU Q M, WANG W, WU X H, et al. Effects of soil pH conditioners on soil properties of acid litchi orchards and litchi growth[J]. Chinese Journal of Tropical Crops, 2020, 41(2):217-224. doi: 10.3969/j.issn.1000-2561.2020.02.002

    CrossRef Google Scholar

    [40] 单翔宇, 黄语娇, 谢如林, 等. 施用白云石粉对酸性土壤pH和有效养分及甘蔗生长的影响[J]. 广西农学报, 2019, 34(5):20-24+29.SHAN X Y, HUANG Y J, XIE R L, et al. Effects of applying dolomite powder on acid soil pH and available nutrientsas well as sugarcane growth[J]. Journal of Guangxi Agriculture, 2019, 34(5):20-24+29. doi: 10.3969/j.issn.1003-4374.2019.05.005

    CrossRef Google Scholar

    SHAN X Y, HUANG Y J, XIE R L, et al. Effects of applying dolomite powder on acid soil pH and available nutrientsas well as sugarcane growth[J]. Journal of Guangxi Agriculture, 2019, 34(5):20-24+29. doi: 10.3969/j.issn.1003-4374.2019.05.005

    CrossRef Google Scholar

    [41] 陈清海. 不同用量钝化剂对土壤及黄瓜Pb含量的影响[J]. 东南园艺, 2022, 10(4):266-270.CHEN Q H. Effect of different dosages of passivators on Pb content in soil and cucumber[J]. Southeast Horticulture, 2022, 10(4):266-270.

    Google Scholar

    CHEN Q H. Effect of different dosages of passivators on Pb content in soil and cucumber[J]. Southeast Horticulture, 2022, 10(4):266-270.

    Google Scholar

    [42] 王文军, 郭熙盛, 武际, 等. 施用白云石对酸性黄红壤作物产量及化学性质的影响[J]. 土壤通报, 2006(4):723-726.WANG W J, GUO X S, WU J, et al. Effects of applying dolomite on crop yield and soil chemical properties in acid yellow-red soils areas[J]. Chinese Journal of Soil Science, 2006(4):723-726. doi: 10.3321/j.issn:0564-3945.2006.04.023

    CrossRef Google Scholar

    WANG W J, GUO X S, WU J, et al. Effects of applying dolomite on crop yield and soil chemical properties in acid yellow-red soils areas[J]. Chinese Journal of Soil Science, 2006(4):723-726. doi: 10.3321/j.issn:0564-3945.2006.04.023

    CrossRef Google Scholar

    [43] SHAABAN M, PENG Q A, HU R, et al. Dolomite application to acidic soils: a promising option for mitigating N2O emissions[J]. Environmental Science and Pollution Research, 2015, 22(24):19961-19970.

    Google Scholar

    [44] LASOTA J, KEMPF M, KEMPF P, et al. Effect of dolomite fertilization on nutritional status of seedlings and soil properties in forest nursery[J]. Soil science annual, 2021, 72(1):1-8.

    Google Scholar

    [45] 李昂. 四种土壤调理剂对酸性土壤铝毒害改良效果研究[D]. 北京: 中国农业科学院, 2014.LI A. Remediate effects on aluminum toxicity by using four soil conditioners in acid soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.

    Google Scholar

    LI A. Remediate effects on aluminum toxicity by using four soil conditioners in acid soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.

    Google Scholar

    [46] 李正强, 熊俊芬, 马琼芳, 等. 4种改良剂对铅锌尾矿污染土壤中光叶紫花苕生长及重金属吸收特性的影响[J]. 中国生态农业学报, 2010, 18(1):158-163.LI Z Q, XIONG J F, MA Q F, et al. Effect of different amendments on growth and heavy metal accumulation in Vicia villosa Roth varglabrescens cv Yunguangzao in soils polluted with lead/zinc mine tailings[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1):158-163.

    Google Scholar

    LI Z Q, XIONG J F, MA Q F, et al. Effect of different amendments on growth and heavy metal accumulation in Vicia villosa Roth varglabrescens cv Yunguangzao in soils polluted with lead/zinc mine tailings[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1):158-163.

    Google Scholar

    [47] 李旭华, 张海伟, 叶为民, 等. 基肥施用方式对烤烟根系生长及根际微生态环境的影响[J]. 西南农业学报, 2017, 30(10):2284-2289.LI X H, ZHANG H W, YE W M, et al. Effects of different basal-dressing application methods on flue-cured root growth and rhizosphere microenvironment[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(10):2284-2289.

    Google Scholar

    LI X H, ZHANG H W, YE W M, et al. Effects of different basal-dressing application methods on flue-cured root growth and rhizosphere microenvironment[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(10):2284-2289.

    Google Scholar

    [48] 喻延. 土壤pH值及不同调控措施对烟草青枯病发生情况的影响[D]. 重庆: 西南大学, 2017.YU Y. Effects of soil pH and different control measures on tobacco bacterial wilt status[D]. Chongqing: Southwest University, 2017.

    Google Scholar

    YU Y. Effects of soil pH and different control measures on tobacco bacterial wilt status[D]. Chongqing: Southwest University, 2017.

    Google Scholar

    [49] 刘阳, 张西兴, 庞世花. 利用白云石和钾长石制备钾钙肥的研究[J]. 磷肥与复肥, 2015, 30(11):9-10+12.LIU Y, ZHANG X X, PANG S H. Study on preparation of potassium-calcium fertilizer from dolomite andpotash feldspar[J]. Phosphate & Compound Fertilizer, 2015, 30(11):9-10+12.

    Google Scholar

    LIU Y, ZHANG X X, PANG S H. Study on preparation of potassium-calcium fertilizer from dolomite andpotash feldspar[J]. Phosphate & Compound Fertilizer, 2015, 30(11):9-10+12.

    Google Scholar

    [50] 钟菊文. 白云石镁肥的加工与应用推广[J]. 江西农业, 2017(9):40.ZHONG J W. Processing and application promotion of dolomite magnesium fertilizer[J]. Acta Agriculturae Jiangxi, 2017(9):40. doi: 10.3969/j.issn.1674-1479.2017.09.018

    CrossRef Google Scholar

    ZHONG J W. Processing and application promotion of dolomite magnesium fertilizer[J]. Acta Agriculturae Jiangxi, 2017(9):40. doi: 10.3969/j.issn.1674-1479.2017.09.018

    CrossRef Google Scholar

    [51] 王鹏飞, 田滔, 张应华, 等. 复配改良剂对设施酸化土壤及团聚体的影响[J]. 环境科学与技术, 2021, 44(12):167-176.WANG P F, TIAN T, ZHANG Y H, et al. Effect of compound amendments on acidified soil and aggregate in greenhouse[J]. Environmental Science & Technology, 2021, 44(12):167-176.

    Google Scholar

    WANG P F, TIAN T, ZHANG Y H, et al. Effect of compound amendments on acidified soil and aggregate in greenhouse[J]. Environmental Science & Technology, 2021, 44(12):167-176.

    Google Scholar

    [52] 佀国涵, 王毅, 徐大兵, 等. 不同施肥结构对酸性黄棕壤修复效果研究[J]. 土壤, 2016, 48(4):714-719.SI G H, WANG Y, XU D B, et al. Amelioration effects of different fertilization structure on acid yellow browr[J]. Soil, 2016, 48(4):714-719.

    Google Scholar

    SI G H, WANG Y, XU D B, et al. Amelioration effects of different fertilization structure on acid yellow browr[J]. Soil, 2016, 48(4):714-719.

    Google Scholar

    [53] MALEK S, WAZNY R, BLOṄSKA E, et al. Soil fungal diversity and biological activity as indicators of fertilization strategies in a forest ecosystem after spruce disintegration in the Karpaty Mountains[J]. Science of The Total Environment, 2021, 751:142335. doi: 10.1016/j.scitotenv.2020.142335

    CrossRef Google Scholar

    [54] GIAGNONI L, DOS ANJOS BORGES L G, GIONGO A, et al. Dolomite and compost amendments enhance Cu phytostabilization and increase microbiota of the leachates from a Cu-contaminated soil[J]. Agronomy, 2020, 10(5):719. doi: 10.3390/agronomy10050719

    CrossRef Google Scholar

    [55] 王文军, 张祥明, 凌国宏, 等. 皖南山区潜育性水稻土剖面性状及无机改良剂改良效果[J]. 水土保持学报, 2014, 28(1):237-241.WANG W J, ZHANG X M, LING G H, et al. Soil profile properties of gleyed paddy soils and improvement effects of inorganic amendment in south Anhui mountainous areas[J]. Journal of Soil and Water Conservation, 2014, 28(1):237-241. doi: 10.3969/j.issn.1009-2242.2014.01.045

    CrossRef Google Scholar

    WANG W J, ZHANG X M, LING G H, et al. Soil profile properties of gleyed paddy soils and improvement effects of inorganic amendment in south Anhui mountainous areas[J]. Journal of Soil and Water Conservation, 2014, 28(1):237-241. doi: 10.3969/j.issn.1009-2242.2014.01.045

    CrossRef Google Scholar

    [56] 杜瑞英. 土壤改良剂和红麻联合修复对多金属污染土壤中微生物群落功能的影响[J]. 生态与农村环境学报, 2013, 29(1):70-75.DU R Y. Effects of application of soil amendment and cultivation of red ramie in remedying multi-metal contaminated soils on functions of soil microbia community[J]. Journal of Ecology and Rural Environment, 2013, 29(1):70-75. doi: 10.3969/j.issn.1673-4831.2013.01.012

    CrossRef Google Scholar

    DU R Y. Effects of application of soil amendment and cultivation of red ramie in remedying multi-metal contaminated soils on functions of soil microbia community[J]. Journal of Ecology and Rural Environment, 2013, 29(1):70-75. doi: 10.3969/j.issn.1673-4831.2013.01.012

    CrossRef Google Scholar

    [57] 欧阳学军, 周国逸, 黄忠良, 等. 土壤酸化对温室气体排放影响的培育实验研究[J]. 中国环境科学, 2005(4):465-470.OUYANG X J, ZHOU G Y, HUANG Z L, et al. The incubation experiment studies on the influence of soil acidification on greenhouse gases emission[J]. China Environmental Science, 2005(4):465-470. doi: 10.3321/j.issn:1000-6923.2005.04.019

    CrossRef Google Scholar

    OUYANG X J, ZHOU G Y, HUANG Z L, et al. The incubation experiment studies on the influence of soil acidification on greenhouse gases emission[J]. China Environmental Science, 2005(4):465-470. doi: 10.3321/j.issn:1000-6923.2005.04.019

    CrossRef Google Scholar

    [58] SHAABAN M, WU Y, PENG Q, et al. The interactive effects of dolomite application and straw incorporation on soil N2O emissions[J]. European Journal of Soil Science, 2018, 69(3):502-511. doi: 10.1111/ejss.12541

    CrossRef Google Scholar

    [59] WU H, HAO X, XU P, et al. CO2 and N2O emissions in response to dolomite application are moisture dependent in an acidic paddy soil[J]. Journal of Soils and Sediments, 2020, 20(8):3136-3147. doi: 10.1007/s11368-020-02652-w

    CrossRef Google Scholar

    [60] SHAABAN M, PENG Q A, LIN S, et al. Dolomite application enhances CH4 uptake in an acidic soil[J]. Catena, 2016, 140:9-14. doi: 10.1016/j.catena.2016.01.014

    CrossRef Google Scholar

    [61] WANG Y, YAO Z, ZHAN Y, et al. Potential benefits of liming to acid soils on climate change mitigation and food security[J]. Global Change Biology, 2021, 27(12):2807-2821. doi: 10.1111/gcb.15607

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(2)

Article Metrics

Article views(401) PDF downloads(356) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint